#version 320 es precision highp float; precision highp int; precision highp usamplerBuffer; precision highp usampler2D; precision highp image2D; precision highp uimage2D; /* Copyright (c) 2020-2022 Hans-Kristian Arntzen * Copyright (c) 2022 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifdef VULKAN precision highp utextureBuffer; precision highp utexture2DArray; precision highp uimage2DArray; precision highp uimage3D; precision highp utexture3D; #extension GL_EXT_samplerless_texture_functions : require layout(local_size_x_id = 0, local_size_y_id = 1, local_size_z = 4) in; layout(set = 0, binding = 0) writeonly uniform uimage2DArray OutputImage2Darray; layout(set = 0, binding = 0) writeonly uniform uimage3D OutputImage3D; layout(set = 0, binding = 1) uniform utexture2DArray PayloadInput2Darray; layout(set = 0, binding = 1) uniform utexture3D PayloadInput3D; layout(set = 0, binding = 2) uniform utextureBuffer LUTRemainingBitsToEndpointQuantizer; layout(set = 0, binding = 3) uniform utextureBuffer LUTEndpointUnquantize; layout(set = 0, binding = 4) uniform utextureBuffer LUTWeightQuantizer; layout(set = 0, binding = 5) uniform utextureBuffer LUTWeightUnquantize; layout(set = 0, binding = 6) uniform utextureBuffer LUTTritQuintDecode; layout(set = 0, binding = 7) uniform utextureBuffer LUTPartitionTable; layout(constant_id = 2) const bool DECODE_8BIT = false; layout(push_constant, std430) uniform pc { ivec2 texel_blk_start; ivec2 texel_end; bool is_3Dimage; }; #else /* VULKAN */ layout(local_size_x = %u, local_size_y = %u, local_size_z = 4) in; #define utextureBuffer usamplerBuffer #define utexture2D usampler2D layout(binding = 0) uniform utextureBuffer LUTRemainingBitsToEndpointQuantizer; layout(binding = 1) uniform utextureBuffer LUTEndpointUnquantize; layout(binding = 2) uniform utextureBuffer LUTWeightQuantizer; layout(binding = 3) uniform utextureBuffer LUTWeightUnquantize; layout(binding = 4) uniform utextureBuffer LUTTritQuintDecode; layout(binding = 5) uniform utexture2D LUTPartitionTable; layout(binding = 6) uniform utexture2D PayloadInput; layout(rgba8ui, binding = 7) writeonly uniform uimage2D OutputImage; const bool DECODE_8BIT = true; #endif /* VULKAN */ const int MODE_LDR = 0; const int MODE_HDR = 1; const int MODE_HDR_LDR_ALPHA = 2; const uvec4 error_color = uvec4(255, 0, 255, 255); /* bitextract.h */ int extract_bits(uvec4 payload, int offset, int bits) { int last_offset = offset + bits - 1; int result; if (bits <= 0) result = 0; else if ((last_offset >> 5) == (offset >> 5)) result = int(bitfieldExtract(payload[offset >> 5], offset & 31, bits)); else { int first_bits = 32 - (offset & 31); int result_first = int(bitfieldExtract(payload[offset >> 5], offset & 31, first_bits)); int result_second = int(bitfieldExtract(payload[(offset >> 5) + 1], 0, bits - first_bits)); result = result_first | (result_second << first_bits); } return result; } /* bitextract.h */ int extract_bits_sign(uvec4 payload, int offset, int bits) { int last_offset = offset + bits - 1; int result; if (bits <= 0) result = 0; else if ((last_offset >> 5) == (offset >> 5)) result = bitfieldExtract(int(payload[offset >> 5]), offset & 31, bits); else { int first_bits = 32 - (offset & 31); int result_first = int(bitfieldExtract(payload[offset >> 5], offset & 31, first_bits)); int result_second = bitfieldExtract(int(payload[(offset >> 5) + 1]), 0, bits - first_bits); result = result_first | (result_second << first_bits); } return result; } /* bitextract.h */ int extract_bits_reverse(uvec4 payload, int offset, int bits) { int last_offset = offset + bits - 1; int result; if (bits <= 0) result = 0; else if ((last_offset >> 5) == (offset >> 5)) result = int(bitfieldReverse(bitfieldExtract(payload[offset >> 5], offset & 31, bits)) >> (32 - bits)); else { int first_bits = 32 - (offset & 31); uint result_first = bitfieldExtract(payload[offset >> 5], offset & 31, first_bits); uint result_second = bitfieldExtract(payload[(offset >> 5) + 1], 0, bits - first_bits); result = int(bitfieldReverse(result_first | (result_second << first_bits)) >> (32 - bits)); } return result; } void swap(inout int a, inout int b) { int tmp = a; a = b; b = tmp; } ivec4 build_coord() { ivec2 payload_coord = ivec2(gl_WorkGroupID.xy) * 2; payload_coord.x += int(gl_LocalInvocationID.z) & 1; payload_coord.y += (int(gl_LocalInvocationID.z) >> 1) & 1; #ifdef VULKAN payload_coord += texel_blk_start; #endif /* VULKAN */ ivec2 coord = payload_coord * ivec2(gl_WorkGroupSize.xy); coord += ivec2(gl_LocalInvocationID.xy); return ivec4(coord, payload_coord); } ivec4 interpolate_endpoint(ivec4 ep0, ivec4 ep1, ivec4 weight, int decode_mode) { if (decode_mode == MODE_HDR) { ep0 <<= 4; ep1 <<= 4; } else if (decode_mode == MODE_HDR_LDR_ALPHA) { ep0.rgb <<= 4; ep1.rgb <<= 4; ep0.a *= 0x101; ep1.a *= 0x101; } else if (DECODE_8BIT) { // This isn't quite right in all cases. // In normal ASTC with sRGB, the alpha channel is supposed to // be decoded as FP16, // even when color components are SRGB 8-bit (?!?!?!?!). // This is correct if decode_unorm8 mode is used though, // for sanity, we're going to assume unorm8 decoding mode // is implied when using sRGB. ep0 = (ep0 << 8) | ivec4(0x80); ep1 = (ep1 << 8) | ivec4(0x80); } else { ep0 *= 0x101; ep1 *= 0x101; } ivec4 color = (ep0 * (64 - weight) + ep1 * weight + 32) >> 6; return color; } bvec4 bvec_or(bvec4 a, bvec4 b) { return bvec4(ivec4(a) | ivec4(b)); } uint round_down_quantize_fp16(int color) { // ASTC has a very peculiar way of converting the decoded result to FP16. // 0xffff -> 1.0, and for everything else we get roundDownQuantizeFP16(vec4(c) / vec4(0x10000)). int msb = findMSB(color); int shamt = msb; int m = ((color << 10) >> shamt) & 0x3ff; int e = msb - 1; uint decoded = color == 0xffff ? 0x3c00u : uint(e < 1 ? (color << 8) : (m | (e << 10))); return decoded; } uvec4 round_down_quantize_fp16(ivec4 color) { // ASTC has a very peculiar way of converting the decoded result to FP16. // 0xffff -> 1.0, and for everything else we get roundDownQuantizeFP16(vec4(c) / vec4(0x10000)). ivec4 msb = findMSB(color); ivec4 shamt = msb; ivec4 m = ((color << 10) >> shamt) & 0x3ff; ivec4 e = msb - 1; uvec4 decoded = uvec4(m | (e << 10)); uvec4 denorm_decode = uvec4(color << 8); decoded = mix(decoded, uvec4(denorm_decode), lessThan(e, ivec4(1))); decoded = mix(decoded, uvec4(0x3c00), equal(color, ivec4(0xffff))); return decoded; } uvec4 decode_fp16(ivec4 color, int decode_mode) { if (decode_mode != MODE_LDR) { // Interpret the value as FP16, but with some extra fixups along the way to make the interpolation more // logarithmic (apparently). From spec: ivec4 e = color >> 11; ivec4 m = color & 0x7ff; ivec4 mt = 4 * m - 512; mt = mix(mt, ivec4(3 * m), lessThan(m, ivec4(512))); mt = mix(mt, ivec4(5 * m - 2048), greaterThanEqual(m, ivec4(1536))); ivec4 decoded = (e << 10) + (mt >> 3); // +Inf or NaN are decoded to 0x7bff (max finite value). decoded = mix(decoded, ivec4(0x7bff), bvec_or(greaterThan(decoded & 0x7fff, ivec4(0x7c00)), equal(decoded, ivec4(0x7c00)))); if (decode_mode == MODE_HDR_LDR_ALPHA) decoded.a = int(round_down_quantize_fp16(color.a)); return uvec4(decoded); } else { return round_down_quantize_fp16(color); } } struct BlockMode { ivec2 weight_grid_size; int weight_mode_index; int num_partitions; int seed; int cem; int config_bits; int primary_config_bits; bool dual_plane; bool void_extent; }; bool decode_error = false; BlockMode decode_block_mode(uvec4 payload) { BlockMode mode; mode.void_extent = (payload.x & 0x1ffu) == 0x1fcu; if (mode.void_extent) return mode; mode.dual_plane = (payload.x & (1u << 10u)) != 0u; uint higher = (payload.x >> 2u) & 3u; uint lower = payload.x & 3u; if (lower != 0u) { mode.weight_mode_index = int((payload.x >> 4u) & 1u); mode.weight_mode_index |= int((payload.x << 1u) & 6u); mode.weight_mode_index |= int((payload.x >> 6u) & 8u); if (higher < 2u) { mode.weight_grid_size.x = int(bitfieldExtract(payload.x, 7, 2) + 4u + 4u * higher); mode.weight_grid_size.y = int(bitfieldExtract(payload.x, 5, 2) + 2u); } else if (higher == 2u) { mode.weight_grid_size.x = int(bitfieldExtract(payload.x, 5, 2) + 2u); mode.weight_grid_size.y = int(bitfieldExtract(payload.x, 7, 2) + 8u); } else { if ((payload.x & (1u << 8u)) != 0u) { mode.weight_grid_size.x = int(bitfieldExtract(payload.x, 7, 1) + 2u); mode.weight_grid_size.y = int(bitfieldExtract(payload.x, 5, 2) + 2u); } else { mode.weight_grid_size.x = int(bitfieldExtract(payload.x, 5, 2) + 2u); mode.weight_grid_size.y = int(bitfieldExtract(payload.x, 7, 1) + 6u); } } } else { int p3 = int(bitfieldExtract(payload.x, 9, 1)); int hi = int(bitfieldExtract(payload.x, 7, 2)); int lo = int(bitfieldExtract(payload.x, 5, 2)); if (hi == 0) { mode.weight_grid_size.x = 12; mode.weight_grid_size.y = lo + 2; } else if (hi == 1) { mode.weight_grid_size.x = lo + 2; mode.weight_grid_size.y = 12; } else if (hi == 2) { mode.dual_plane = false; p3 = 0; mode.weight_grid_size.x = lo + 6; mode.weight_grid_size.y = int(bitfieldExtract(payload.x, 9, 2) + 6u); } else { if (lo == 0) mode.weight_grid_size = ivec2(6, 10); else if (lo == 1) mode.weight_grid_size = ivec2(10, 6); else decode_error = true; } int p0 = int(bitfieldExtract(payload.x, 4, 1)); int p1 = int(bitfieldExtract(payload.x, 2, 1)); int p2 = int(bitfieldExtract(payload.x, 3, 1)); mode.weight_mode_index = p0 + (p1 << 1) + (p2 << 2) + (p3 << 3); } // 11 bits for block mode. // 2 bits for partition select // If partitions > 1: // 4 bits CEM selector // If dual_plane: // 2 bits of CCS // else: // 10 for partition seed // 2 bits for CEM main selector // If CEM[1:0] = 00: // 4 bits for CEM extra selector if all same type. // else: // (1 + 2) * num_partitions if different types. // First 4 bits are encoded next to CEM[1:0], otherwise, packed before weights. // If dual_plane: // 2 bits of CCS before extra CEM bits. const int CONFIG_BITS_BLOCK = 11; const int CONFIG_BITS_PARTITION_MODE = 2; const int CONFIG_BITS_SEED = 10; const int CONFIG_BITS_PRIMARY_MULTI_CEM = 2; const int CONFIG_BITS_CEM = 4; const int CONFIG_BITS_EXTRA_CEM_PER_PARTITION = 3; const int CONFIG_BITS_CCS = 2; mode.num_partitions = int(bitfieldExtract(payload.x, CONFIG_BITS_BLOCK, CONFIG_BITS_PARTITION_MODE)) + 1; if (mode.num_partitions > 1) { mode.seed = int(bitfieldExtract(payload.x, CONFIG_BITS_BLOCK + CONFIG_BITS_PARTITION_MODE, CONFIG_BITS_SEED)); mode.cem = int(bitfieldExtract(payload.x, CONFIG_BITS_BLOCK + CONFIG_BITS_PARTITION_MODE + CONFIG_BITS_SEED, CONFIG_BITS_PRIMARY_MULTI_CEM + CONFIG_BITS_CEM)); } else mode.cem = int(bitfieldExtract(payload.x, CONFIG_BITS_BLOCK + CONFIG_BITS_PARTITION_MODE, CONFIG_BITS_CEM)); int config_bits; if (mode.num_partitions > 1) { bool single_cem = (mode.cem & 3) == 0; if (single_cem) { config_bits = CONFIG_BITS_BLOCK + CONFIG_BITS_PARTITION_MODE + CONFIG_BITS_SEED + CONFIG_BITS_PRIMARY_MULTI_CEM + CONFIG_BITS_CEM; } else { config_bits = CONFIG_BITS_BLOCK + CONFIG_BITS_PARTITION_MODE + CONFIG_BITS_SEED + CONFIG_BITS_PRIMARY_MULTI_CEM + CONFIG_BITS_EXTRA_CEM_PER_PARTITION * mode.num_partitions; } } else { config_bits = CONFIG_BITS_BLOCK + CONFIG_BITS_PARTITION_MODE + CONFIG_BITS_CEM; } // Other config bits are packed before the weights. int primary_config_bits; if (mode.num_partitions > 1) { primary_config_bits = CONFIG_BITS_BLOCK + CONFIG_BITS_PARTITION_MODE + CONFIG_BITS_SEED + CONFIG_BITS_PRIMARY_MULTI_CEM + CONFIG_BITS_CEM; } else primary_config_bits = config_bits; if (mode.dual_plane) config_bits += CONFIG_BITS_CCS; // This is not allowed. if (any(greaterThan(mode.weight_grid_size, ivec2(gl_WorkGroupSize.xy)))) decode_error = true; if (mode.dual_plane && mode.num_partitions > 3) decode_error = true; mode.config_bits = config_bits; mode.primary_config_bits = primary_config_bits; return mode; } int idiv3_floor(int v) { return (v * 0x5556) >> 16; } int idiv3_ceil(int v) { return idiv3_floor(v + 2); } int idiv5_floor(int v) { return (v * 0x3334) >> 16; } int idiv5_ceil(int v) { return idiv5_floor(v + 4); } uvec4 build_bitmask(int bits) { ivec4 num_bits = ivec4(bits, bits - 32, bits - 64, bits - 96); uvec4 mask = uvec4(1) << clamp(num_bits, ivec4(0), ivec4(31)); mask--; mask = mix(mask, uvec4(0xffffffffu), greaterThanEqual(uvec4(bits), uvec4(32, 64, 96, 128))); return mask; } int decode_integer_sequence(uvec4 payload, int start_bit, int index, ivec3 quant) { int ret; if (quant.y != 0) { // Trit-decoding. int block = idiv5_floor(index); int offset = index - block * 5; start_bit += block * (5 * quant.x + 8); int t0_t1_offset = start_bit + (quant.x * 1 + 0); int t2_t3_offset = start_bit + (quant.x * 2 + 2); int t4_offset = start_bit + (quant.x * 3 + 4); int t5_t6_offset = start_bit + (quant.x * 4 + 5); int t7_offset = start_bit + (quant.x * 5 + 7); int t = (extract_bits(payload, t0_t1_offset, 2) << 0) | (extract_bits(payload, t2_t3_offset, 2) << 2) | (extract_bits(payload, t4_offset, 1) << 4) | (extract_bits(payload, t5_t6_offset, 2) << 5) | (extract_bits(payload, t7_offset, 1) << 7); t = int(texelFetch(LUTTritQuintDecode, t).x); t = (t >> (3 * offset)) & 7; int m_offset = offset * quant.x; m_offset += idiv5_ceil(offset * 8); if (quant.x != 0) { int m = extract_bits(payload, m_offset + start_bit, quant.x); ret = (t << quant.x) | m; } else ret = t; } else if (quant.z != 0) { // Quint-decoding int block = idiv3_floor(index); int offset = index - block * 3; start_bit += block * (3 * quant.x + 7); int q0_q1_q2_offset = start_bit + (quant.x * 1 + 0); int q3_q4_offset = start_bit + (quant.x * 2 + 3); int q5_q6_offset = start_bit + (quant.x * 3 + 5); int q = (extract_bits(payload, q0_q1_q2_offset, 3) << 0) | (extract_bits(payload, q3_q4_offset, 2) << 3) | (extract_bits(payload, q5_q6_offset, 2) << 5); q = int(texelFetch(LUTTritQuintDecode, 256 + q).x); q = (q >> (3 * offset)) & 7; int m_offset = offset * quant.x; m_offset += idiv3_ceil(offset * 7); if (quant.x != 0) { int m = extract_bits(payload, m_offset + start_bit, quant.x); ret = (q << quant.x) | m; } else ret = q; } else { int bit = index * quant.x; ret = extract_bits(payload, start_bit + bit, quant.x); } return ret; } ivec2 normalize_coord(ivec2 pixel_coord) { ivec2 D = ivec2((vec2((1024 + ivec2(gl_WorkGroupSize.xy >> 1u))) + 0.5) / vec2(gl_WorkGroupSize.xy - 1u)); ivec2 c = D * pixel_coord; return c; } int decode_weight(uvec4 payload, int weight_index, ivec4 quant) { int primary_weight = decode_integer_sequence(payload, 0, weight_index, quant.xyz); primary_weight = int(texelFetch(LUTWeightUnquantize, primary_weight + quant.w).x); return primary_weight; } int decode_weight_bilinear(uvec4 payload, ivec2 coord, int weight_resolution, int stride, int offset, ivec2 fractional, ivec4 quant) { int index = coord.y * weight_resolution + coord.x; int p00 = decode_weight(payload, stride * index + offset, quant); int p10, p01, p11; if (fractional.x != 0) p10 = decode_weight(payload, stride * (index + 1) + offset, quant); else p10 = p00; if (fractional.y != 0) { p01 = decode_weight(payload, stride * (index + weight_resolution) + offset, quant); if (fractional.x != 0) p11 = decode_weight(payload, stride * (index + weight_resolution + 1) + offset, quant); else p11 = p01; } else { p01 = p00; p11 = p10; } int w11 = (fractional.x * fractional.y + 8) >> 4; int w10 = fractional.x - w11; int w01 = fractional.y - w11; int w00 = 16 - fractional.x - fractional.y + w11; return (p00 * w00 + p10 * w10 + p01 * w01 + p11 * w11 + 8) >> 4; } ivec4 decode_weights(uvec4 payload, BlockMode mode, ivec2 normalized_pixel, out int weight_cost_bits) { ivec4 quant = ivec4(texelFetch(LUTWeightQuantizer, mode.weight_mode_index)); int num_weights = mode.weight_grid_size.x * mode.weight_grid_size.y; num_weights <<= int(mode.dual_plane); weight_cost_bits = quant.x * num_weights + idiv5_ceil(num_weights * 8 * quant.y) + idiv3_ceil(num_weights * 7 * quant.z); // Decoders must deal with error conditions and return the correct error color. if (weight_cost_bits < 24 || weight_cost_bits > 96 || num_weights > 64) { decode_error = true; return ivec4(0); } int ccs; if (mode.dual_plane) { int extra_cem_bits = 0; if ((mode.cem & 3) != 0) extra_cem_bits = max(mode.num_partitions * 3 - 4, 0); ccs = extract_bits(payload, 126 - weight_cost_bits - extra_cem_bits, 2); } payload = bitfieldReverse(payload); payload = payload.wzyx; payload &= build_bitmask(weight_cost_bits); // Scale the normalized coordinate to weight grid. ivec2 weight_pixel_fixed_point = (normalized_pixel * (mode.weight_grid_size - 1) + 32) >> 6; ivec2 weight_pixel = weight_pixel_fixed_point >> 4; ivec2 weight_pixel_fractional = weight_pixel_fixed_point & 0xf; ivec4 ret; int primary_weight = decode_weight_bilinear(payload, weight_pixel, mode.weight_grid_size.x, 1 << int(mode.dual_plane), 0, weight_pixel_fractional, quant); if (mode.dual_plane) { int secondary_weight = decode_weight_bilinear(payload, weight_pixel, mode.weight_grid_size.x, 2, 1, weight_pixel_fractional, quant); ret = mix(ivec4(primary_weight), ivec4(secondary_weight), equal(ivec4(ccs), ivec4(0, 1, 2, 3))); } else ret = ivec4(primary_weight); return ret; } void decode_endpoint_ldr_luma_direct(out ivec4 ep0, out ivec4 ep1, int v0, int v1) { ep0 = ivec4(ivec3(v0), 0xff); ep1 = ivec4(ivec3(v1), 0xff); } void decode_endpoint_hdr_luma_direct(out ivec4 ep0, out ivec4 ep1, int v0, int v1) { int y0, y1; if (v1 >= v0) { y0 = v0 << 4; y1 = v1 << 4; } else { y0 = (v1 << 4) + 8; y1 = (v0 << 4) - 8; } ep0 = ivec4(ivec3(y0), 0x780); ep1 = ivec4(ivec3(y1), 0x780); } void decode_endpoint_hdr_luma_direct_small_range(out ivec4 ep0, out ivec4 ep1, int v0, int v1) { int y0, y1, d; if ((v0 & 0x80) != 0) { y0 = ((v1 & 0xe0) << 4) | ((v0 & 0x7f) << 2); d = (v1 & 0x1f) << 2; } else { y0 = ((v1 & 0xf0) << 4) | ((v0 & 0x7f) << 1); d = (v1 & 0x0f) << 1; } y1 = min(y0 + d, 0xfff); ep0 = ivec4(ivec3(y0), 0x780); ep1 = ivec4(ivec3(y1), 0x780); } void decode_endpoint_ldr_luma_base_offset(out ivec4 ep0, out ivec4 ep1, int v0, int v1) { int l0 = (v0 >> 2) | (v1 & 0xc0); int l1 = l0 + (v1 & 0x3f); l1 = min(l1, 0xff); ep0 = ivec4(ivec3(l0), 0xff); ep1 = ivec4(ivec3(l1), 0xff); } void decode_endpoint_ldr_luma_alpha_direct(out ivec4 ep0, out ivec4 ep1, int v0, int v1, int v2, int v3) { ep0 = ivec4(ivec3(v0), v2); ep1 = ivec4(ivec3(v1), v3); } ivec4 blue_contract(int r, int g, int b, int a) { ivec4 ret; ret.r = (r + b) >> 1; ret.g = (g + b) >> 1; ret.b = b; ret.a = a; return ret; } void bit_transfer_signed(inout int a, inout int b) { b >>= 1; b |= a & 0x80; a >>= 1; a &= 0x3f; a = bitfieldExtract(a, 0, 6); } void decode_endpoint_ldr_luma_alpha_base_offset(out ivec4 ep0, out ivec4 ep1, int v0, int v1, int v2, int v3) { bit_transfer_signed(v1, v0); bit_transfer_signed(v3, v2); int v0_v1 = clamp(v0 + v1, 0, 0xff); int v2_v3 = clamp(v2 + v3, 0, 0xff); v0 = clamp(v0, 0, 0xff); v2 = clamp(v2, 0, 0xff); ep0 = ivec4(ivec3(v0), v2); ep1 = ivec4(ivec3(v0_v1), v2_v3); } void decode_endpoint_ldr_rgb_base_scale(out ivec4 ep0, out ivec4 ep1, int v0, int v1, int v2, int v3) { ep0 = ivec4((ivec3(v0, v1, v2) * v3) >> 8, 0xff); ep1 = ivec4(v0, v1, v2, 0xff); } void decode_endpoint_ldr_rgb_base_scale_two_a(out ivec4 ep0, out ivec4 ep1, int v0, int v1, int v2, int v3, int v4, int v5) { ep0 = ivec4((ivec3(v0, v1, v2) * v3) >> 8, v4); ep1 = ivec4(v0, v1, v2, v5); } void decode_endpoint_ldr_rgb_direct(out ivec4 ep0, out ivec4 ep1, int v0, int v1, int v2, int v3, int v4, int v5) { int s0 = v0 + v2 + v4; int s1 = v1 + v3 + v5; if (s1 >= s0) { ep0 = ivec4(v0, v2, v4, 0xff); ep1 = ivec4(v1, v3, v5, 0xff); } else { ep0 = blue_contract(v1, v3, v5, 0xff); ep1 = blue_contract(v0, v2, v4, 0xff); } } void decode_endpoint_hdr_rgb_scale(out ivec4 ep0, out ivec4 ep1, int v0, int v1, int v2, int v3) { // Mind-numbing weird format, just copy from spec ... int mode_value = ((v0 & 0xc0) >> 6) | ((v1 & 0x80) >> 5) | ((v2 & 0x80) >> 4); int major_component; int mode; if ((mode_value & 0xc) != 0xc) { major_component = mode_value >> 2; mode = mode_value & 3; } else if (mode_value != 0xf) { major_component = mode_value & 3; mode = 4; } else { major_component = 0; mode = 5; } int red = v0 & 0x3f; int green = v1 & 0x1f; int blue = v2 & 0x1f; int scale = v3 & 0x1f; int x0 = (v1 >> 6) & 1; int x1 = (v1 >> 5) & 1; int x2 = (v2 >> 6) & 1; int x3 = (v2 >> 5) & 1; int x4 = (v3 >> 7) & 1; int x5 = (v3 >> 6) & 1; int x6 = (v3 >> 5) & 1; int ohm = 1 << mode; if ((ohm & 0x30) != 0) green |= x0 << 6; if ((ohm & 0x3a) != 0) green |= x1 << 5; if ((ohm & 0x30) != 0) blue |= x2 << 6; if ((ohm & 0x3a) != 0) blue |= x3 << 5; if ((ohm & 0x3d) != 0) scale |= x6 << 5; if ((ohm & 0x2d) != 0) scale |= x5 << 6; if ((ohm & 0x04) != 0) scale |= x4 << 7; if ((ohm & 0x3b) != 0) red |= x4 << 6; if ((ohm & 0x04) != 0) red |= x3 << 6; if ((ohm & 0x10) != 0) red |= x5 << 7; if ((ohm & 0x0f) != 0) red |= x2 << 7; if ((ohm & 0x05) != 0) red |= x1 << 8; if ((ohm & 0x0a) != 0) red |= x0 << 8; if ((ohm & 0x05) != 0) red |= x0 << 9; if ((ohm & 0x02) != 0) red |= x6 << 9; if ((ohm & 0x01) != 0) red |= x3 << 10; if ((ohm & 0x02) != 0) red |= x5 << 10; int shamt = max(mode, 1); red <<= shamt; green <<= shamt; blue <<= shamt; scale <<= shamt; if (mode != 5) { green = red - green; blue = red - blue; } if (major_component == 1) swap(red, green); else if (major_component == 2) swap(red, blue); ep1 = ivec4(clamp(ivec3(red, green, blue), ivec3(0), ivec3(0xfff)), 0x780); ep0 = ivec4(clamp(ivec3(red, green, blue) - scale, ivec3(0), ivec3(0xfff)), 0x780); } void decode_endpoint_hdr_rgb_direct(out ivec4 ep0, out ivec4 ep1, int v0, int v1, int v2, int v3, int v4, int v5) { int major_component = ((v4 & 0x80) >> 7) | ((v5 & 0x80) >> 6); if (major_component == 3) { ep0 = ivec4(v0 << 4, v2 << 4, (v4 & 0x7f) << 5, 0x780); ep1 = ivec4(v1 << 4, v3 << 4, (v5 & 0x7f) << 5, 0x780); return; } int mode = ((v1 & 0x80) >> 7) | ((v2 & 0x80) >> 6) | ((v3 & 0x80) >> 5); int va = v0 | ((v1 & 0x40) << 2); int vb0 = v2 & 0x3f; int vb1 = v3 & 0x3f; int vc = v1 & 0x3f; int vd0 = v4 & 0x7f; int vd1 = v5 & 0x7f; int d_bits = 7 - (mode & 1); if ((mode & 5) == 4) d_bits -= 2; vd0 = bitfieldExtract(vd0, 0, d_bits); vd1 = bitfieldExtract(vd1, 0, d_bits); int x0 = (v2 >> 6) & 1; int x1 = (v3 >> 6) & 1; int x2 = (v4 >> 6) & 1; int x3 = (v5 >> 6) & 1; int x4 = (v4 >> 5) & 1; int x5 = (v5 >> 5) & 1; int ohm = 1 << mode; if ((ohm & 0xa4) != 0) va |= x0 << 9; if ((ohm & 0x08) != 0) va |= x2 << 9; if ((ohm & 0x50) != 0) va |= x4 << 9; if ((ohm & 0x50) != 0) va |= x5 << 10; if ((ohm & 0xa0) != 0) va |= x1 << 10; if ((ohm & 0xc0) != 0) va |= x2 << 11; if ((ohm & 0x04) != 0) vc |= x1 << 6; if ((ohm & 0xe8) != 0) vc |= x3 << 6; if ((ohm & 0x20) != 0) vc |= x2 << 7; if ((ohm & 0x5b) != 0) vb0 |= x0 << 6; if ((ohm & 0x5b) != 0) vb1 |= x1 << 6; if ((ohm & 0x12) != 0) vb0 |= x2 << 7; if ((ohm & 0x12) != 0) vb1 |= x3 << 7; int shamt = (mode >> 1) ^ 3; va <<= shamt; vb0 <<= shamt; vb1 <<= shamt; vc <<= shamt; vd0 <<= shamt; vd1 <<= shamt; ep1 = ivec4(clamp(ivec3(va, va - vb0, va - vb1), ivec3(0), ivec3(0xfff)), 0x780); ep0 = ivec4(clamp(ivec3(va - vc, va - vb0 - vc - vd0, va - vb1 - vc - vd1), ivec3(0), ivec3(0xfff)), 0x780); if (major_component == 1) { swap(ep0.r, ep0.g); swap(ep1.r, ep1.g); } else if (major_component == 2) { swap(ep0.r, ep0.b); swap(ep1.r, ep1.b); } } void decode_endpoint_ldr_rgb_base_offset(out ivec4 ep0, out ivec4 ep1, int v0, int v1, int v2, int v3, int v4, int v5) { bit_transfer_signed(v1, v0); bit_transfer_signed(v3, v2); bit_transfer_signed(v5, v4); if (v1 + v3 + v5 >= 0) { ep0 = ivec4(v0, v2, v4, 0xff); ep1 = ivec4(v0 + v1, v2 + v3, v4 + v5, 0xff); } else { ep0 = blue_contract(v0 + v1, v2 + v3, v4 + v5, 0xff); ep1 = blue_contract(v0, v2, v4, 0xff); } ep0.rgb = clamp(ep0.rgb, ivec3(0), ivec3(0xff)); ep1.rgb = clamp(ep1.rgb, ivec3(0), ivec3(0xff)); } void decode_endpoint_ldr_rgba_direct(out ivec4 ep0, out ivec4 ep1, int v0, int v1, int v2, int v3, int v4, int v5, int v6, int v7) { int s0 = v0 + v2 + v4; int s1 = v1 + v3 + v5; if (s1 >= s0) { ep0 = ivec4(v0, v2, v4, v6); ep1 = ivec4(v1, v3, v5, v7); } else { ep0 = blue_contract(v1, v3, v5, v7); ep1 = blue_contract(v0, v2, v4, v6); } } void decode_endpoint_ldr_rgba_base_offset(out ivec4 ep0, out ivec4 ep1, int v0, int v1, int v2, int v3, int v4, int v5, int v6, int v7) { bit_transfer_signed(v1, v0); bit_transfer_signed(v3, v2); bit_transfer_signed(v5, v4); bit_transfer_signed(v7, v6); if (v1 + v3 + v5 >= 0) { ep0 = ivec4(v0, v2, v4, v6); ep1 = ivec4(v0 + v1, v2 + v3, v4 + v5, v6 + v7); } else { ep0 = blue_contract(v0 + v1, v2 + v3, v4 + v5, v6 + v7); ep1 = blue_contract(v0, v2, v4, v6); } ep0 = clamp(ep0, ivec4(0), ivec4(0xff)); ep1 = clamp(ep1, ivec4(0), ivec4(0xff)); } void decode_endpoint_hdr_alpha(out int ep0, out int ep1, int v6, int v7) { int mode = ((v6 >> 7) & 1) | ((v7 >> 6) & 2); v6 &= 0x7f; v7 &= 0x7f; if (mode == 3) { ep0 = v6 << 5; ep1 = v7 << 5; } else { v6 |= (v7 << (mode + 1)) & 0x780; v7 &= 0x3f >> mode; v7 ^= 0x20 >> mode; v7 -= 0x20 >> mode; v6 <<= 4 - mode; v7 <<= 4 - mode; v7 += v6; v7 = clamp(v7, 0, 0xfff); ep0 = v6; ep1 = v7; } } void decode_endpoint(out ivec4 ep0, out ivec4 ep1, out int decode_mode, uvec4 payload, int bit_offset, ivec4 quant, int ep_mode, int base_endpoint_index, int num_endpoint_bits) { num_endpoint_bits += bit_offset; payload &= build_bitmask(num_endpoint_bits); // Could of course use an array, but that doesn't lower nicely to indexed registers on all GPUs. int v0, v1, v2, v3, v4, v5, v6, v7; int num_values = 2 * ((ep_mode >> 2) + 1); #define DECODE_EP(i) \ int(texelFetch(LUTEndpointUnquantize, quant.w + decode_integer_sequence(payload, bit_offset, i + base_endpoint_index, quant.xyz)).x) int hi_bits = ep_mode >> 2; v0 = DECODE_EP(0); v1 = DECODE_EP(1); if (hi_bits >= 1) { v2 = DECODE_EP(2); v3 = DECODE_EP(3); } if (hi_bits >= 2) { v4 = DECODE_EP(4); v5 = DECODE_EP(5); } if (hi_bits >= 3) { v6 = DECODE_EP(6); v7 = DECODE_EP(7); } switch (ep_mode) { case 0: decode_endpoint_ldr_luma_direct(ep0, ep1, v0, v1); decode_mode = MODE_LDR; break; case 1: decode_endpoint_ldr_luma_base_offset(ep0, ep1, v0, v1); decode_mode = MODE_LDR; break; case 2: decode_endpoint_hdr_luma_direct(ep0, ep1, v0, v1); decode_mode = MODE_HDR; break; case 3: decode_endpoint_hdr_luma_direct_small_range(ep0, ep1, v0, v1); decode_mode = MODE_HDR; break; case 4: decode_endpoint_ldr_luma_alpha_direct(ep0, ep1, v0, v1, v2, v3); decode_mode = MODE_LDR; break; case 5: decode_endpoint_ldr_luma_alpha_base_offset(ep0, ep1, v0, v1, v2, v3); decode_mode = MODE_LDR; break; case 6: decode_endpoint_ldr_rgb_base_scale(ep0, ep1, v0, v1, v2, v3); decode_mode = MODE_LDR; break; case 7: decode_endpoint_hdr_rgb_scale(ep0, ep1, v0, v1, v2, v3); decode_mode = MODE_HDR; break; case 8: decode_endpoint_ldr_rgb_direct(ep0, ep1, v0, v1, v2, v3, v4, v5); decode_mode = MODE_LDR; break; case 9: decode_endpoint_ldr_rgb_base_offset(ep0, ep1, v0, v1, v2, v3, v4, v5); decode_mode = MODE_LDR; break; case 10: decode_endpoint_ldr_rgb_base_scale_two_a(ep0, ep1, v0, v1, v2, v3, v4, v5); decode_mode = MODE_LDR; break; case 11: case 14: case 15: decode_endpoint_hdr_rgb_direct(ep0, ep1, v0, v1, v2, v3, v4, v5); if (ep_mode == 14) { ep0.a = v6; ep1.a = v7; decode_mode = MODE_HDR_LDR_ALPHA; } else if (ep_mode == 15) { decode_endpoint_hdr_alpha(ep0.a, ep1.a, v6, v7); decode_mode = MODE_HDR; } else decode_mode = MODE_HDR; break; case 12: decode_endpoint_ldr_rgba_direct(ep0, ep1, v0, v1, v2, v3, v4, v5, v6, v7); decode_mode = MODE_LDR; break; case 13: decode_endpoint_ldr_rgba_base_offset(ep0, ep1, v0, v1, v2, v3, v4, v5, v6, v7); decode_mode = MODE_LDR; break; } if (DECODE_8BIT && decode_mode != MODE_LDR) decode_error = true; } #define CHECK_DECODE_ERROR() do { \ if (decode_error) \ { \ emit_decode_error(coord.xy); \ return; \ } \ } while(false) void emit_decode_error(ivec2 coord) { #ifdef VULKAN if (is_3Dimage) imageStore(OutputImage3D, ivec3(coord, gl_WorkGroupID.z), error_color); else imageStore(OutputImage2Darray, ivec3(coord, gl_WorkGroupID.z), error_color); #else /* VULKAN */ imageStore(OutputImage, coord, error_color); #endif /* VULKAN */ } int compute_num_endpoint_pairs(int num_partitions, int cem) { int ret; if (num_partitions > 1) { bool single_cem = (cem & 3) == 0; if (single_cem) ret = ((cem >> 4) + 1) * num_partitions; else ret = (cem & 3) * num_partitions + bitCount(bitfieldExtract(uint(cem), 2, num_partitions)); } else { ret = (cem >> 2) + 1; } return ret; } void decode_cem_base_endpoint(uvec4 payload, int weight_cost_bits, inout int cem, out int base_endpoint_index, int num_partitions, int partition_index) { if (num_partitions > 1) { bool single_cem = (cem & 3) == 0; if (single_cem) { cem >>= 2; base_endpoint_index = ((cem >> 2) + 1) * partition_index; } else { if (partition_index != 0) base_endpoint_index = (cem & 3) * partition_index + bitCount(bitfieldExtract(uint(cem), 2, partition_index)); else base_endpoint_index = 0; int base_class = (cem & 3) - 1; int extra_cem_bits = num_partitions * 3 - 4; int extra_bits = extract_bits(payload, 128 - weight_cost_bits - extra_cem_bits, extra_cem_bits); cem = (extra_bits << 4) | (cem >> 2); int class_offset_bit = (cem >> partition_index) & 1; int ep_bits = (cem >> (num_partitions + 2 * partition_index)) & 3; cem = 4 * (base_class + class_offset_bit) + ep_bits; } base_endpoint_index *= 2; } else { base_endpoint_index = 0; } } ivec4 void_extent_color(uvec4 payload, out int decode_mode) { int min_s = extract_bits(payload, 12, 13); int max_s = extract_bits(payload, 12 + 13, 13); int min_t = extract_bits(payload, 12 + 2 * 13, 13); int max_t = extract_bits(payload, 12 + 3 * 13, 13); int reserved = extract_bits(payload, 10, 2); if (reserved != 3) { decode_error = true; return ivec4(0); } if (!all(equal(ivec4(min_s, max_s, min_t, max_t), ivec4((1 << 13) - 1)))) { if (any(greaterThanEqual(ivec2(min_s, min_t), ivec2(max_s, max_t)))) { decode_error = true; return ivec4(0); } } decode_mode = (payload.x & (1u << 9)) != 0u ? MODE_HDR : MODE_LDR; int r = extract_bits(payload, 64, 16); int g = extract_bits(payload, 64 + 16, 16); int b = extract_bits(payload, 64 + 32, 16); int a = extract_bits(payload, 64 + 48, 16); return ivec4(r, g, b, a); } void main() { ivec4 coord = build_coord(); #ifdef VULKAN if (any(greaterThanEqual(coord.xy, texel_end.xy))) return; #else /* VULKAN */ if (any(greaterThanEqual(coord.xy, imageSize(OutputImage)))) return; #endif /* VULKAN */ ivec2 pixel_coord = ivec2(gl_LocalInvocationID.xy); int linear_pixel = int(gl_WorkGroupSize.x) * pixel_coord.y + pixel_coord.x; uvec4 payload; #ifdef VULKAN if (is_3Dimage) payload = texelFetch(PayloadInput3D, ivec3(coord.zw, gl_WorkGroupID.z), 0); else payload = texelFetch(PayloadInput2Darray,ivec3(coord.zw, gl_WorkGroupID.z), 0); #else /* VULKAN */ payload = texelFetch(PayloadInput, coord.zw, 0); #endif /* VULKAN */ BlockMode block_mode = decode_block_mode(payload); CHECK_DECODE_ERROR(); ivec4 final_color; int decode_mode; if (block_mode.void_extent) { final_color = void_extent_color(payload, decode_mode); CHECK_DECODE_ERROR(); } else { int weight_cost_bits; ivec4 weights = decode_weights(payload, block_mode, normalize_coord(pixel_coord), weight_cost_bits); int partition_index = 0; if (block_mode.num_partitions > 1) { int lut_x = pixel_coord.x + int(gl_WorkGroupSize.x) * (block_mode.seed & 31); int lut_y = pixel_coord.y + int(gl_WorkGroupSize.y) * (block_mode.seed >> 5); #ifdef VULKAN int lut_width = int(gl_WorkGroupSize.x) * 32; partition_index = int(texelFetch(LUTPartitionTable, lut_y * lut_width + lut_x).x); #else /* VULKAN */ partition_index = int(texelFetch(LUTPartitionTable, ivec2(lut_x, lut_y), 0).x); #endif /* VULKAN */ partition_index = (partition_index >> (2 * block_mode.num_partitions - 4)) & 3; } int available_endpoint_bits = max(128 - block_mode.config_bits - weight_cost_bits, 0); // In multi-partition mode, the 6-bit CEM field is encoded as // First two bits tell if all CEM field are the same, if not we specify a class offset, and N bits // after that will offset the class by 1. int num_endpoint_pairs = compute_num_endpoint_pairs(block_mode.num_partitions, block_mode.cem); // Error color must be emitted if we need more than 18 integer sequence encoded values of color. if (num_endpoint_pairs > 9) { decode_error = true; emit_decode_error(coord.xy); return; } ivec4 endpoint_quant = ivec4(texelFetch(LUTRemainingBitsToEndpointQuantizer, 128 * (num_endpoint_pairs - 1) + available_endpoint_bits)); // Only read the bits we need for endpoints. int num_endpoint_values = num_endpoint_pairs * 2; available_endpoint_bits = endpoint_quant.x * num_endpoint_values + idiv5_ceil(endpoint_quant.y * 8 * num_endpoint_values) + idiv3_ceil(endpoint_quant.z * 7 * num_endpoint_values); // No space left for color endpoints. if (all(equal(endpoint_quant.xyz, ivec3(0)))) { decode_error = true; emit_decode_error(coord.xy); return; } int endpoint_bit_offset = block_mode.primary_config_bits; ivec4 ep0, ep1; // Decode CEM for multi-partition schemes. int cem = block_mode.cem; int base_endpoint_index; decode_cem_base_endpoint(payload, weight_cost_bits, cem, base_endpoint_index, block_mode.num_partitions, partition_index); decode_endpoint(ep0, ep1, decode_mode, payload, endpoint_bit_offset, endpoint_quant, cem, base_endpoint_index, available_endpoint_bits); CHECK_DECODE_ERROR(); final_color = interpolate_endpoint(ep0, ep1, weights, decode_mode); } if (DECODE_8BIT) { #ifdef VULKAN if (is_3Dimage) imageStore(OutputImage3D, ivec3(coord.xy, gl_WorkGroupID.z), uvec4(final_color >> 8)); else imageStore(OutputImage2Darray, ivec3(coord.xy, gl_WorkGroupID.z), uvec4(final_color >> 8)); #else /* VULKAN */ imageStore(OutputImage, coord.xy, uvec4(final_color >> 8)); #endif /* VULKAN */ } else { uvec4 encoded; if (block_mode.void_extent && decode_mode == MODE_HDR) encoded = uvec4(final_color); else encoded = decode_fp16(final_color, decode_mode); #ifdef VULKAN if (is_3Dimage) imageStore(OutputImage3D, ivec3(coord.xy, gl_WorkGroupID.z), encoded); else imageStore(OutputImage2Darray, ivec3(coord.xy, gl_WorkGroupID.z), encoded); #else /* VULKAN */ imageStore(OutputImage, coord.xy, encoded); #endif /* VULKAN */ } }