/* * Copyright © 2019 Raspberry Pi Ltd * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "v3dv_private.h" #include "drm-uapi/drm_fourcc.h" #include "util/format/u_format.h" #include "util/u_math.h" #include "vk_util.h" #include "vulkan/wsi/wsi_common.h" #include "vk_android.h" /** * Computes the HW's UIFblock padding for a given height/cpp. * * The goal of the padding is to keep pages of the same color (bank number) at * least half a page away from each other vertically when crossing between * columns of UIF blocks. */ static uint32_t v3d_get_ub_pad(uint32_t cpp, uint32_t height) { uint32_t utile_h = v3d_utile_height(cpp); uint32_t uif_block_h = utile_h * 2; uint32_t height_ub = height / uif_block_h; uint32_t height_offset_in_pc = height_ub % PAGE_CACHE_UB_ROWS; /* For the perfectly-aligned-for-UIF-XOR case, don't add any pad. */ if (height_offset_in_pc == 0) return 0; /* Try padding up to where we're offset by at least half a page. */ if (height_offset_in_pc < PAGE_UB_ROWS_TIMES_1_5) { /* If we fit entirely in the page cache, don't pad. */ if (height_ub < PAGE_CACHE_UB_ROWS) return 0; else return PAGE_UB_ROWS_TIMES_1_5 - height_offset_in_pc; } /* If we're close to being aligned to page cache size, then round up * and rely on XOR. */ if (height_offset_in_pc > PAGE_CACHE_MINUS_1_5_UB_ROWS) return PAGE_CACHE_UB_ROWS - height_offset_in_pc; /* Otherwise, we're far enough away (top and bottom) to not need any * padding. */ return 0; } /** * Computes the dimension with required padding for mip levels. * * This padding is required for width and height dimensions when the mip * level is greater than 1, and for the depth dimension when the mip level * is greater than 0. This function expects to be passed a mip level >= 1. * * Note: Hardware documentation seems to suggest that the third argument * should be the utile dimensions, but through testing it was found that * the block dimension should be used instead. */ static uint32_t v3d_get_dimension_mpad(uint32_t dimension, uint32_t level, uint32_t block_dimension) { assert(level >= 1); uint32_t pot_dim = u_minify(dimension, 1); pot_dim = util_next_power_of_two(DIV_ROUND_UP(pot_dim, block_dimension)); uint32_t padded_dim = block_dimension * pot_dim; return u_minify(padded_dim, level - 1); } static bool v3d_setup_plane_slices(struct v3dv_image *image, uint8_t plane, uint32_t plane_offset, const VkSubresourceLayout *plane_layouts) { assert(image->planes[plane].cpp > 0); uint32_t width = image->planes[plane].width; uint32_t height = image->planes[plane].height; uint32_t depth = image->vk.extent.depth; uint32_t utile_w = v3d_utile_width(image->planes[plane].cpp); uint32_t utile_h = v3d_utile_height(image->planes[plane].cpp); uint32_t uif_block_w = utile_w * 2; uint32_t uif_block_h = utile_h * 2; uint32_t block_width = vk_format_get_blockwidth(image->vk.format); uint32_t block_height = vk_format_get_blockheight(image->vk.format); /* Note that power-of-two padding is based on level 1. These are not * equivalent to just util_next_power_of_two(dimension), because at a * level 0 dimension of 9, the level 1 power-of-two padded value is 4, * not 8. Additionally the pot padding is based on the block size. */ uint32_t pot_width = 2 * v3d_get_dimension_mpad(width, 1, block_width); uint32_t pot_height = 2 * v3d_get_dimension_mpad(height, 1, block_height); uint32_t pot_depth = 2 * v3d_get_dimension_mpad(depth, 1, 1); assert(image->vk.samples == VK_SAMPLE_COUNT_1_BIT || image->vk.samples == VK_SAMPLE_COUNT_4_BIT); bool msaa = image->vk.samples != VK_SAMPLE_COUNT_1_BIT; bool uif_top = msaa; assert(image->vk.array_layers > 0); assert(depth > 0); assert(image->vk.mip_levels >= 1); /* Texture Base Address needs to be 64-byte aligned. If we have an explicit * plane layout we will return false to fail image creation with appropriate * error code. */ uint32_t offset; if (plane_layouts) { offset = plane_layouts[plane].offset; if (offset % 64 != 0) return false; } else { offset = plane_offset; } assert(plane_offset % 64 == 0); for (int32_t i = image->vk.mip_levels - 1; i >= 0; i--) { struct v3d_resource_slice *slice = &image->planes[plane].slices[i]; slice->width = u_minify(width, i); slice->height = u_minify(height, i); uint32_t level_width, level_height, level_depth; if (i < 2) { level_width = slice->width; level_height = slice->height; } else { level_width = u_minify(pot_width, i); level_height = u_minify(pot_height, i); } if (i < 1) level_depth = u_minify(depth, i); else level_depth = u_minify(pot_depth, i); if (msaa) { level_width *= 2; level_height *= 2; } level_width = DIV_ROUND_UP(level_width, block_width); level_height = DIV_ROUND_UP(level_height, block_height); if (!image->tiled) { slice->tiling = V3D_TILING_RASTER; if (image->vk.image_type == VK_IMAGE_TYPE_1D) level_width = align(level_width, 64 / image->planes[plane].cpp); } else { if ((i != 0 || !uif_top) && (level_width <= utile_w || level_height <= utile_h)) { slice->tiling = V3D_TILING_LINEARTILE; level_width = align(level_width, utile_w); level_height = align(level_height, utile_h); } else if ((i != 0 || !uif_top) && level_width <= uif_block_w) { slice->tiling = V3D_TILING_UBLINEAR_1_COLUMN; level_width = align(level_width, uif_block_w); level_height = align(level_height, uif_block_h); } else if ((i != 0 || !uif_top) && level_width <= 2 * uif_block_w) { slice->tiling = V3D_TILING_UBLINEAR_2_COLUMN; level_width = align(level_width, 2 * uif_block_w); level_height = align(level_height, uif_block_h); } else { /* We align the width to a 4-block column of UIF blocks, but we * only align height to UIF blocks. */ level_width = align(level_width, 4 * uif_block_w); level_height = align(level_height, uif_block_h); slice->ub_pad = v3d_get_ub_pad(image->planes[plane].cpp, level_height); level_height += slice->ub_pad * uif_block_h; /* If the padding set us to to be aligned to the page cache size, * then the HW will use the XOR bit on odd columns to get us * perfectly misaligned. */ if ((level_height / uif_block_h) % (V3D_PAGE_CACHE_SIZE / V3D_UIFBLOCK_ROW_SIZE) == 0) { slice->tiling = V3D_TILING_UIF_XOR; } else { slice->tiling = V3D_TILING_UIF_NO_XOR; } } } slice->offset = offset; slice->stride = level_width * image->planes[plane].cpp; /* We assume that rowPitch in the plane layout refers to level 0 */ if (plane_layouts && i == 0) { if (plane_layouts[plane].rowPitch < slice->stride) return false; if (plane_layouts[plane].rowPitch % image->planes[plane].cpp) return false; if (image->tiled && (plane_layouts[plane].rowPitch % (4 * uif_block_w))) return false; slice->stride = plane_layouts[plane].rowPitch; } slice->padded_height = level_height; if (slice->tiling == V3D_TILING_UIF_NO_XOR || slice->tiling == V3D_TILING_UIF_XOR) { slice->padded_height_of_output_image_in_uif_blocks = slice->padded_height / (2 * v3d_utile_height(image->planes[plane].cpp)); } slice->size = level_height * slice->stride; uint32_t slice_total_size = slice->size * level_depth; /* The HW aligns level 1's base to a page if any of level 1 or * below could be UIF XOR. The lower levels then inherit the * alignment for as long as necessary, thanks to being power of * two aligned. */ if (i == 1 && level_width > 4 * uif_block_w && level_height > PAGE_CACHE_MINUS_1_5_UB_ROWS * uif_block_h) { slice_total_size = align(slice_total_size, V3D_UIFCFG_PAGE_SIZE); } offset += slice_total_size; } image->planes[plane].size = offset - plane_offset; /* UIF/UBLINEAR levels need to be aligned to UIF-blocks, and LT only * needs to be aligned to utile boundaries. Since tiles are laid out * from small to big in memory, we need to align the later UIF slices * to UIF blocks, if they were preceded by non-UIF-block-aligned LT * slices. * * We additionally align to 4k, which improves UIF XOR performance. * * Finally, because the Texture Base Address field must be 64-byte aligned, * we also need to align linear images to 64 if the image is going to be * used for transfer. */ if (image->tiled) { image->planes[plane].alignment = 4096; } else { image->planes[plane].alignment = (image->vk.usage & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) ? 64 : image->planes[plane].cpp; } uint32_t align_offset = align(image->planes[plane].slices[0].offset, image->planes[plane].alignment) - image->planes[plane].slices[0].offset; if (align_offset) { image->planes[plane].size += align_offset; for (int i = 0; i < image->vk.mip_levels; i++) image->planes[plane].slices[i].offset += align_offset; } /* Arrays and cube textures have a stride which is the distance from * one full mipmap tree to the next (64b aligned). For 3D textures, * we need to program the stride between slices of miplevel 0. */ if (image->vk.image_type != VK_IMAGE_TYPE_3D) { image->planes[plane].cube_map_stride = align(image->planes[plane].slices[0].offset + image->planes[plane].slices[0].size, 64); if (plane_layouts && image->vk.array_layers > 1) { if (plane_layouts[plane].arrayPitch % 64 != 0) return false; if (plane_layouts[plane].arrayPitch < image->planes[plane].cube_map_stride) { return false; } image->planes[plane].cube_map_stride = plane_layouts[plane].arrayPitch; } image->planes[plane].size += image->planes[plane].cube_map_stride * (image->vk.array_layers - 1); } else { image->planes[plane].cube_map_stride = image->planes[plane].slices[0].size; if (plane_layouts) { /* We assume that depthPitch in the plane layout refers to level 0 */ if (plane_layouts[plane].depthPitch != image->planes[plane].slices[0].size) { return false; } } } return true; } static VkResult v3d_setup_slices(struct v3dv_image *image, bool disjoint, const VkSubresourceLayout *plane_layouts) { if (disjoint && image->plane_count == 1) disjoint = false; uint64_t offset = 0; for (uint8_t plane = 0; plane < image->plane_count; plane++) { offset = disjoint ? 0 : offset; if (!v3d_setup_plane_slices(image, plane, offset, plane_layouts)) { assert(plane_layouts); return VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT; } offset += align64(image->planes[plane].size, 64); } /* From the Vulkan spec: * * "If the size of the resultant image would exceed maxResourceSize, then * vkCreateImage must fail and return VK_ERROR_OUT_OF_DEVICE_MEMORY. This * failure may occur even when all image creation parameters satisfy their * valid usage requirements." */ if (offset > 0xffffffff) return VK_ERROR_OUT_OF_DEVICE_MEMORY; image->non_disjoint_size = disjoint ? 0 : offset; return VK_SUCCESS; } uint32_t v3dv_layer_offset(const struct v3dv_image *image, uint32_t level, uint32_t layer, uint8_t plane) { const struct v3d_resource_slice *slice = &image->planes[plane].slices[level]; if (image->vk.image_type == VK_IMAGE_TYPE_3D) return image->planes[plane].mem_offset + slice->offset + layer * slice->size; else return image->planes[plane].mem_offset + slice->offset + layer * image->planes[plane].cube_map_stride; } VkResult v3dv_update_image_layout(struct v3dv_device *device, struct v3dv_image *image, uint64_t modifier, bool disjoint, const VkImageDrmFormatModifierExplicitCreateInfoEXT *explicit_mod_info) { assert(!explicit_mod_info || image->plane_count == explicit_mod_info->drmFormatModifierPlaneCount); assert(!explicit_mod_info || modifier == explicit_mod_info->drmFormatModifier); image->tiled = modifier != DRM_FORMAT_MOD_LINEAR; image->vk.drm_format_mod = modifier; return v3d_setup_slices(image, disjoint, explicit_mod_info ? explicit_mod_info->pPlaneLayouts : NULL); } VkResult v3dv_image_init(struct v3dv_device *device, const VkImageCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, struct v3dv_image *image) { /* When using the simulator the WSI common code will see that our * driver wsi device doesn't match the display device and because of that * it will not attempt to present directly from the swapchain images, * instead it will use the prime blit path (use_buffer_blit flag in * struct wsi_swapchain), where it copies the contents of the swapchain * images to a linear buffer with appropriate row stride for presentation. * As a result, on that path, swapchain images do not have any special * requirements and are not created with the pNext structs below. */ VkImageTiling tiling = pCreateInfo->tiling; uint64_t modifier = DRM_FORMAT_MOD_INVALID; const VkImageDrmFormatModifierListCreateInfoEXT *mod_info = NULL; const VkImageDrmFormatModifierExplicitCreateInfoEXT *explicit_mod_info = NULL; /* This section is removed by the optimizer for non-ANDROID builds */ VkImageDrmFormatModifierExplicitCreateInfoEXT eci; VkSubresourceLayout a_plane_layouts[V3DV_MAX_PLANE_COUNT]; if (vk_image_is_android_native_buffer(&image->vk)) { VkResult result = vk_android_get_anb_layout( pCreateInfo, &eci, a_plane_layouts, V3DV_MAX_PLANE_COUNT); if (result != VK_SUCCESS) return result; explicit_mod_info = &eci; modifier = eci.drmFormatModifier; } if (tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) { mod_info = vk_find_struct_const(pCreateInfo->pNext, IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT); explicit_mod_info = vk_find_struct_const(pCreateInfo->pNext, IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT); assert(mod_info || explicit_mod_info); if (mod_info) { for (uint32_t i = 0; i < mod_info->drmFormatModifierCount; i++) { switch (mod_info->pDrmFormatModifiers[i]) { case DRM_FORMAT_MOD_LINEAR: if (modifier == DRM_FORMAT_MOD_INVALID) modifier = DRM_FORMAT_MOD_LINEAR; break; case DRM_FORMAT_MOD_BROADCOM_UIF: modifier = DRM_FORMAT_MOD_BROADCOM_UIF; break; } } } else { modifier = explicit_mod_info->drmFormatModifier; } assert(modifier == DRM_FORMAT_MOD_LINEAR || modifier == DRM_FORMAT_MOD_BROADCOM_UIF); } else if (pCreateInfo->imageType == VK_IMAGE_TYPE_1D || image->vk.wsi_legacy_scanout) { tiling = VK_IMAGE_TILING_LINEAR; } if (modifier == DRM_FORMAT_MOD_INVALID) modifier = (tiling == VK_IMAGE_TILING_OPTIMAL) ? DRM_FORMAT_MOD_BROADCOM_UIF : DRM_FORMAT_MOD_LINEAR; const struct v3dv_format *format = v3dv_X(device, get_format)(image->vk.format); v3dv_assert(format != NULL && format->plane_count); assert(pCreateInfo->samples == VK_SAMPLE_COUNT_1_BIT || pCreateInfo->samples == VK_SAMPLE_COUNT_4_BIT); image->format = format; image->plane_count = vk_format_get_plane_count(image->vk.format); const struct vk_format_ycbcr_info *ycbcr_info = vk_format_get_ycbcr_info(image->vk.format); for (uint8_t plane = 0; plane < image->plane_count; plane++) { VkFormat plane_format = vk_format_get_plane_format(image->vk.format, plane); image->planes[plane].cpp = vk_format_get_blocksize(plane_format); image->planes[plane].vk_format = plane_format; image->planes[plane].width = image->vk.extent.width; image->planes[plane].height = image->vk.extent.height; if (ycbcr_info) { image->planes[plane].width /= ycbcr_info->planes[plane].denominator_scales[0]; image->planes[plane].height /= ycbcr_info->planes[plane].denominator_scales[1]; } } /* Our meta paths can create image views with compatible formats for any * image, so always set this flag to keep the common Vulkan image code * happy. */ image->vk.create_flags |= VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT; /* At this time, an AHB handle is not yet provided. * Image layout will be filled up during vkBindImageMemory2 * This section is removed by the optimizer for non-ANDROID builds */ if (vk_image_is_android_hardware_buffer(&image->vk)) return VK_SUCCESS; bool disjoint = image->vk.create_flags & VK_IMAGE_CREATE_DISJOINT_BIT; return v3dv_update_image_layout(device, image, modifier, disjoint, explicit_mod_info); } static VkResult create_image_from_swapchain(struct v3dv_device *device, const VkImageCreateInfo *pCreateInfo, const VkImageSwapchainCreateInfoKHR *swapchain_info, const VkAllocationCallbacks *pAllocator, VkImage *pImage); static VkResult create_image(struct v3dv_device *device, const VkImageCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkImage *pImage) { #if DETECT_OS_ANDROID /* VkImageSwapchainCreateInfoKHR is not useful at all */ const VkImageSwapchainCreateInfoKHR *swapchain_info = NULL; #else const VkImageSwapchainCreateInfoKHR *swapchain_info = vk_find_struct_const(pCreateInfo->pNext, IMAGE_SWAPCHAIN_CREATE_INFO_KHR); #endif if (swapchain_info && swapchain_info->swapchain != VK_NULL_HANDLE) return create_image_from_swapchain(device, pCreateInfo, swapchain_info, pAllocator, pImage); VkResult result; struct v3dv_image *image = NULL; image = vk_image_create(&device->vk, pCreateInfo, pAllocator, sizeof(*image)); if (image == NULL) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); result = v3dv_image_init(device, pCreateInfo, pAllocator, image); if (result != VK_SUCCESS) goto fail; /* This section is removed by the optimizer for non-ANDROID builds */ if (vk_image_is_android_native_buffer(&image->vk)) { result = vk_android_import_anb(&device->vk, pCreateInfo, pAllocator, &image->vk); if (result != VK_SUCCESS) goto fail; } *pImage = v3dv_image_to_handle(image); return VK_SUCCESS; fail: vk_image_destroy(&device->vk, pAllocator, &image->vk); return result; } static VkResult create_image_from_swapchain(struct v3dv_device *device, const VkImageCreateInfo *pCreateInfo, const VkImageSwapchainCreateInfoKHR *swapchain_info, const VkAllocationCallbacks *pAllocator, VkImage *pImage) { struct v3dv_image *swapchain_image = v3dv_wsi_get_image_from_swapchain(swapchain_info->swapchain, 0); assert(swapchain_image); VkImageCreateInfo local_create_info = *pCreateInfo; local_create_info.pNext = NULL; /* Added by wsi code. */ local_create_info.usage |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; /* The spec requires TILING_OPTIMAL as input, but the swapchain image may * privately use a different tiling. See spec anchor * #swapchain-wsi-image-create-info . */ assert(local_create_info.tiling == VK_IMAGE_TILING_OPTIMAL); local_create_info.tiling = swapchain_image->vk.tiling; VkImageDrmFormatModifierListCreateInfoEXT local_modifier_info = { .sType = VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT, .drmFormatModifierCount = 1, .pDrmFormatModifiers = &swapchain_image->vk.drm_format_mod, }; if (swapchain_image->vk.drm_format_mod != DRM_FORMAT_MOD_INVALID) __vk_append_struct(&local_create_info, &local_modifier_info); assert(swapchain_image->vk.image_type == local_create_info.imageType); assert(swapchain_image->vk.format == local_create_info.format); assert(swapchain_image->vk.extent.width == local_create_info.extent.width); assert(swapchain_image->vk.extent.height == local_create_info.extent.height); assert(swapchain_image->vk.extent.depth == local_create_info.extent.depth); assert(swapchain_image->vk.array_layers == local_create_info.arrayLayers); assert(swapchain_image->vk.samples == local_create_info.samples); assert(swapchain_image->vk.tiling == local_create_info.tiling); assert((swapchain_image->vk.usage & local_create_info.usage) == local_create_info.usage); return create_image(device, &local_create_info, pAllocator, pImage); } VKAPI_ATTR VkResult VKAPI_CALL v3dv_CreateImage(VkDevice _device, const VkImageCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkImage *pImage) { V3DV_FROM_HANDLE(v3dv_device, device, _device); return create_image(device, pCreateInfo, pAllocator, pImage); } static void get_image_subresource_layout(struct v3dv_device *device, struct v3dv_image *image, const VkImageSubresource2KHR *subresource2, VkSubresourceLayout2KHR *layout2) { const VkImageSubresource *subresource = &subresource2->imageSubresource; VkSubresourceLayout *layout = &layout2->subresourceLayout; uint8_t plane = v3dv_plane_from_aspect(subresource->aspectMask); const struct v3d_resource_slice *slice = &image->planes[plane].slices[subresource->mipLevel]; /* About why the offset below works for both disjoint and non-disjoint * cases, from the Vulkan spec: * * "If the image is disjoint, then the offset is relative to the base * address of the plane." * * "If the image is non-disjoint, then the offset is relative to the base * address of the image." * * In our case, the per-plane mem_offset for non-disjoint images is the * same for all planes and matches the base address of the image. */ layout->offset = v3dv_layer_offset(image, subresource->mipLevel, subresource->arrayLayer, plane) - image->planes[plane].mem_offset; layout->rowPitch = slice->stride; layout->depthPitch = image->vk.image_type == VK_IMAGE_TYPE_3D ? image->planes[plane].cube_map_stride : 0; layout->arrayPitch = image->vk.array_layers > 1 ? image->planes[plane].cube_map_stride : 0; if (image->vk.image_type != VK_IMAGE_TYPE_3D) { layout->size = slice->size; } else { /* For 3D images, the size of the slice represents the size of a 2D slice * in the 3D image, so we have to multiply by the depth extent of the * miplevel. For levels other than the first, we just compute the size * as the distance between consecutive levels (notice that mip levels are * arranged in memory from last to first). */ if (subresource->mipLevel == 0) { layout->size = slice->size * image->vk.extent.depth; } else { const struct v3d_resource_slice *prev_slice = &image->planes[plane].slices[subresource->mipLevel - 1]; layout->size = prev_slice->offset - slice->offset; } } } VKAPI_ATTR void VKAPI_CALL v3dv_GetImageSubresourceLayout2KHR(VkDevice _device, VkImage _image, const VkImageSubresource2KHR *subresource2, VkSubresourceLayout2KHR *layout2) { V3DV_FROM_HANDLE(v3dv_device, device, _device); V3DV_FROM_HANDLE(v3dv_image, image, _image); get_image_subresource_layout(device, image, subresource2, layout2); } VKAPI_ATTR void VKAPI_CALL v3dv_GetDeviceImageSubresourceLayoutKHR(VkDevice vk_device, const VkDeviceImageSubresourceInfoKHR *pInfo, VkSubresourceLayout2KHR *pLayout) { V3DV_FROM_HANDLE(v3dv_device, device, vk_device); memset(&pLayout->subresourceLayout, 0, sizeof(pLayout->subresourceLayout)); VkImage vk_image = VK_NULL_HANDLE; VkResult result = create_image(device, pInfo->pCreateInfo, NULL, &vk_image); if (result != VK_SUCCESS) return; struct v3dv_image *image = v3dv_image_from_handle(vk_image); get_image_subresource_layout(device, image, pInfo->pSubresource, pLayout); v3dv_DestroyImage(vk_device, vk_image, NULL); } VKAPI_ATTR void VKAPI_CALL v3dv_DestroyImage(VkDevice _device, VkImage _image, const VkAllocationCallbacks* pAllocator) { V3DV_FROM_HANDLE(v3dv_device, device, _device); V3DV_FROM_HANDLE(v3dv_image, image, _image); if (image == NULL) return; /* If we have created a shadow tiled image for this image we must also free * it (along with its memory allocation). */ if (image->shadow) { bool disjoint = image->vk.create_flags & VK_IMAGE_CREATE_DISJOINT_BIT; for (int i = 0; i < (disjoint ? image->plane_count : 1); i++) { if (image->shadow->planes[i].mem) { v3dv_FreeMemory(_device, v3dv_device_memory_to_handle(image->shadow->planes[i].mem), pAllocator); } } v3dv_DestroyImage(_device, v3dv_image_to_handle(image->shadow), pAllocator); image->shadow = NULL; } vk_image_destroy(&device->vk, pAllocator, &image->vk); } VkImageViewType v3dv_image_type_to_view_type(VkImageType type) { switch (type) { case VK_IMAGE_TYPE_1D: return VK_IMAGE_VIEW_TYPE_1D; case VK_IMAGE_TYPE_2D: return VK_IMAGE_VIEW_TYPE_2D; case VK_IMAGE_TYPE_3D: return VK_IMAGE_VIEW_TYPE_3D; default: unreachable("Invalid image type"); } } static VkResult create_image_view(struct v3dv_device *device, bool driver_internal, const VkImageViewCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkImageView *pView) { V3DV_FROM_HANDLE(v3dv_image, image, pCreateInfo->image); struct v3dv_image_view *iview; iview = vk_image_view_create(&device->vk, driver_internal, pCreateInfo, pAllocator, sizeof(*iview)); if (iview == NULL) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); const VkImageAspectFlagBits any_plane_aspect = VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT | VK_IMAGE_ASPECT_PLANE_2_BIT; if (image->vk.aspects & any_plane_aspect) { assert((image->vk.aspects & ~any_plane_aspect) == 0); iview->plane_count = 0; static const VkImageAspectFlagBits plane_aspects[]= { VK_IMAGE_ASPECT_PLANE_0_BIT, VK_IMAGE_ASPECT_PLANE_1_BIT, VK_IMAGE_ASPECT_PLANE_2_BIT }; for (uint8_t plane = 0; plane < V3DV_MAX_PLANE_COUNT; plane++) { if (iview->vk.aspects & plane_aspects[plane]) iview->planes[iview->plane_count++].image_plane = plane; } } else { iview->plane_count = 1; iview->planes[0].image_plane = 0; } /* At this point we should have at least one plane */ assert(iview->plane_count > 0); const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange; /* If we have D24S8 format but the view only selects the stencil aspect * we want to re-interpret the format as RGBA8_UINT, then map our stencil * data reads to the R component and ignore the GBA channels that contain * the depth aspect data. * * FIXME: thwe code belows calls vk_component_mapping_to_pipe_swizzle * only so it can then call util_format_compose_swizzles later. Maybe it * makes sense to implement swizzle composition using VkSwizzle directly. */ VkFormat format; if (image->vk.format == VK_FORMAT_D24_UNORM_S8_UINT && range->aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) { format = VK_FORMAT_R8G8B8A8_UINT; uint8_t stencil_aspect_swizzle[4] = { PIPE_SWIZZLE_X, PIPE_SWIZZLE_0, PIPE_SWIZZLE_0, PIPE_SWIZZLE_1, }; uint8_t view_swizzle[4]; vk_component_mapping_to_pipe_swizzle(iview->vk.swizzle, view_swizzle); util_format_compose_swizzles(stencil_aspect_swizzle, view_swizzle, iview->view_swizzle); } else { format = iview->vk.format; vk_component_mapping_to_pipe_swizzle(iview->vk.swizzle, iview->view_swizzle); } iview->vk.view_format = format; iview->format = v3dv_X(device, get_format)(format); assert(iview->format && iview->format->plane_count); for (uint8_t plane = 0; plane < iview->plane_count; plane++) { iview->planes[plane].offset = v3dv_layer_offset(image, iview->vk.base_mip_level, iview->vk.base_array_layer, plane); if (vk_format_is_depth_or_stencil(iview->vk.view_format)) { iview->planes[plane].internal_type = v3dv_X(device, get_internal_depth_type)(iview->vk.view_format); } else { v3dv_X(device, get_internal_type_bpp_for_output_format) (iview->format->planes[plane].rt_type, &iview->planes[plane].internal_type, &iview->planes[plane].internal_bpp); } const uint8_t *format_swizzle = v3dv_get_format_swizzle(device, format, plane); util_format_compose_swizzles(format_swizzle, iview->view_swizzle, iview->planes[plane].swizzle); iview->planes[plane].swap_rb = v3dv_format_swizzle_needs_rb_swap(format_swizzle); iview->planes[plane].channel_reverse = v3dv_format_swizzle_needs_reverse(format_swizzle); } v3dv_X(device, pack_texture_shader_state)(device, iview); *pView = v3dv_image_view_to_handle(iview); return VK_SUCCESS; } VkResult v3dv_create_image_view(struct v3dv_device *device, const VkImageViewCreateInfo *pCreateInfo, VkImageView *pView) { return create_image_view(device, true, pCreateInfo, NULL, pView); } VKAPI_ATTR VkResult VKAPI_CALL v3dv_CreateImageView(VkDevice _device, const VkImageViewCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkImageView *pView) { V3DV_FROM_HANDLE(v3dv_device, device, _device); return create_image_view(device, false, pCreateInfo, pAllocator, pView); } VKAPI_ATTR void VKAPI_CALL v3dv_DestroyImageView(VkDevice _device, VkImageView imageView, const VkAllocationCallbacks* pAllocator) { V3DV_FROM_HANDLE(v3dv_device, device, _device); V3DV_FROM_HANDLE(v3dv_image_view, image_view, imageView); if (image_view == NULL) return; if (image_view->shadow) { v3dv_DestroyImageView(_device, v3dv_image_view_to_handle(image_view->shadow), pAllocator); image_view->shadow = NULL; } vk_image_view_destroy(&device->vk, pAllocator, &image_view->vk); } VKAPI_ATTR VkResult VKAPI_CALL v3dv_CreateBufferView(VkDevice _device, const VkBufferViewCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkBufferView *pView) { V3DV_FROM_HANDLE(v3dv_device, device, _device); struct v3dv_buffer *buffer = v3dv_buffer_from_handle(pCreateInfo->buffer); struct v3dv_buffer_view *view = vk_object_zalloc(&device->vk, pAllocator, sizeof(*view), VK_OBJECT_TYPE_BUFFER_VIEW); if (!view) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); uint32_t range; if (pCreateInfo->range == VK_WHOLE_SIZE) range = buffer->size - pCreateInfo->offset; else range = pCreateInfo->range; enum pipe_format pipe_format = vk_format_to_pipe_format(pCreateInfo->format); uint32_t num_elements = range / util_format_get_blocksize(pipe_format); view->buffer = buffer; view->offset = pCreateInfo->offset; view->size = view->offset + range; view->num_elements = num_elements; view->vk_format = pCreateInfo->format; view->format = v3dv_X(device, get_format)(view->vk_format); /* We don't support multi-plane formats for buffer views */ assert(view->format->plane_count == 1); v3dv_X(device, get_internal_type_bpp_for_output_format) (view->format->planes[0].rt_type, &view->internal_type, &view->internal_bpp); const VkBufferUsageFlags2CreateInfoKHR *flags2 = vk_find_struct_const(pCreateInfo->pNext, BUFFER_USAGE_FLAGS_2_CREATE_INFO_KHR); VkBufferUsageFlags2KHR usage; if (flags2) usage = flags2->usage; else usage = buffer->usage; if (usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT || usage & VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT) v3dv_X(device, pack_texture_shader_state_from_buffer_view)(device, view); *pView = v3dv_buffer_view_to_handle(view); return VK_SUCCESS; } VKAPI_ATTR void VKAPI_CALL v3dv_DestroyBufferView(VkDevice _device, VkBufferView bufferView, const VkAllocationCallbacks *pAllocator) { V3DV_FROM_HANDLE(v3dv_device, device, _device); V3DV_FROM_HANDLE(v3dv_buffer_view, buffer_view, bufferView); if (buffer_view == NULL) return; vk_object_free(&device->vk, pAllocator, buffer_view); }