/* * Copyright 2021 Alyssa Rosenzweig * Copyright 2019-2020 Collabora, Ltd. * SPDX-License-Identifier: MIT */ #include "util/list.h" #include "util/set.h" #include "util/u_memory.h" #include "agx_compiler.h" /* Liveness analysis is a backwards-may dataflow analysis pass. Within a block, * we compute live_out from live_in. The intrablock pass is linear-time. It * returns whether progress was made. */ /* live_in[s] = GEN[s] + (live_out[s] - KILL[s]) */ void agx_liveness_ins_update(BITSET_WORD *live, agx_instr *I) { agx_foreach_ssa_dest(I, d) BITSET_CLEAR(live, I->dest[d].value); agx_foreach_ssa_src(I, s) { /* If the source is not live after this instruction, but becomes live * at this instruction, this is the use that kills the source */ I->src[s].kill = !BITSET_TEST(live, I->src[s].value); BITSET_SET(live, I->src[s].value); } } /* Globally, liveness analysis uses a fixed-point algorithm based on a * worklist. We initialize a work list with the exit block. We iterate the work * list to compute live_in from live_out for each block on the work list, * adding the predecessors of the block to the work list if we made progress. */ void agx_compute_liveness(agx_context *ctx) { u_worklist worklist; u_worklist_init(&worklist, ctx->num_blocks, NULL); /* Free any previous liveness, and allocate */ unsigned words = BITSET_WORDS(ctx->alloc); agx_foreach_block(ctx, block) { if (block->live_in) ralloc_free(block->live_in); if (block->live_out) ralloc_free(block->live_out); block->live_in = rzalloc_array(block, BITSET_WORD, words); block->live_out = rzalloc_array(block, BITSET_WORD, words); agx_worklist_push_head(&worklist, block); } /* Iterate the work list */ while (!u_worklist_is_empty(&worklist)) { /* Pop in reverse order since liveness is a backwards pass */ agx_block *blk = agx_worklist_pop_head(&worklist); /* Update its liveness information */ memcpy(blk->live_in, blk->live_out, words * sizeof(BITSET_WORD)); agx_foreach_instr_in_block_rev(blk, I) { if (I->op != AGX_OPCODE_PHI) agx_liveness_ins_update(blk->live_in, I); } /* Propagate the live in of the successor (blk) to the live out of * predecessors. * * Phi nodes are logically on the control flow edge and act in parallel. * To handle when propagating, we kill writes from phis and make live the * corresponding sources. */ agx_foreach_predecessor(blk, pred) { BITSET_WORD *live = ralloc_array(blk, BITSET_WORD, words); memcpy(live, blk->live_in, words * sizeof(BITSET_WORD)); /* Kill write */ agx_foreach_phi_in_block(blk, phi) { assert(phi->dest[0].type == AGX_INDEX_NORMAL); BITSET_CLEAR(live, phi->dest[0].value); } /* Make live the corresponding source */ agx_foreach_phi_in_block(blk, phi) { agx_index operand = phi->src[agx_predecessor_index(blk, *pred)]; if (operand.type == AGX_INDEX_NORMAL) BITSET_SET(live, operand.value); } bool progress = false; for (unsigned i = 0; i < words; ++i) { progress |= live[i] & ~((*pred)->live_out[i]); (*pred)->live_out[i] |= live[i]; } if (progress) agx_worklist_push_tail(&worklist, *pred); } } u_worklist_fini(&worklist); }