/* * Copyright © 2020 Valve Corporation * * SPDX-License-Identifier: MIT */ #include #include "radv_buffer.h" #include "radv_cs.h" #include "radv_debug.h" #include "radv_entrypoints.h" #include "radv_perfcounter.h" #include "radv_spm.h" #include "radv_sqtt.h" #include "sid.h" #include "ac_pm4.h" #include "vk_command_pool.h" #include "vk_common_entrypoints.h" #define SQTT_BUFFER_ALIGN_SHIFT 12 bool radv_is_instruction_timing_enabled(void) { return debug_get_bool_option("RADV_THREAD_TRACE_INSTRUCTION_TIMING", true); } bool radv_sqtt_queue_events_enabled(void) { return debug_get_bool_option("RADV_THREAD_TRACE_QUEUE_EVENTS", true); } static enum radv_queue_family radv_ip_to_queue_family(enum amd_ip_type t) { switch (t) { case AMD_IP_GFX: return RADV_QUEUE_GENERAL; case AMD_IP_COMPUTE: return RADV_QUEUE_COMPUTE; case AMD_IP_SDMA: return RADV_QUEUE_TRANSFER; default: unreachable("Unknown IP type"); } } static void radv_emit_wait_for_idle(const struct radv_device *device, struct radeon_cmdbuf *cs, int family) { const struct radv_physical_device *pdev = radv_device_physical(device); const enum radv_queue_family qf = radv_ip_to_queue_family(family); enum rgp_flush_bits sqtt_flush_bits = 0; radv_cs_emit_cache_flush( device->ws, cs, pdev->info.gfx_level, NULL, 0, qf, (family == RADV_QUEUE_COMPUTE ? RADV_CMD_FLAG_CS_PARTIAL_FLUSH : (RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_PS_PARTIAL_FLUSH)) | RADV_CMD_FLAG_INV_ICACHE | RADV_CMD_FLAG_INV_SCACHE | RADV_CMD_FLAG_INV_VCACHE | RADV_CMD_FLAG_INV_L2, &sqtt_flush_bits, 0); } static void radv_emit_sqtt_start(const struct radv_device *device, struct radeon_cmdbuf *cs, enum radv_queue_family qf) { const struct radv_physical_device *pdev = radv_device_physical(device); const bool is_compute_queue = qf == RADV_QUEUE_COMPUTE; struct ac_pm4_state *pm4; pm4 = ac_pm4_create_sized(&pdev->info, false, 512, is_compute_queue); if (!pm4) return; ac_sqtt_emit_start(&pdev->info, pm4, &device->sqtt, is_compute_queue); ac_pm4_finalize(pm4); radeon_check_space(device->ws, cs, pm4->ndw); radeon_emit_array(cs, pm4->pm4, pm4->ndw); ac_pm4_free_state(pm4); } static void radv_emit_sqtt_stop(const struct radv_device *device, struct radeon_cmdbuf *cs, enum radv_queue_family qf) { const struct radv_physical_device *pdev = radv_device_physical(device); const bool is_compute_queue = qf == RADV_QUEUE_COMPUTE; struct ac_pm4_state *pm4; pm4 = ac_pm4_create_sized(&pdev->info, false, 512, is_compute_queue); if (!pm4) return; ac_sqtt_emit_stop(&pdev->info, pm4, is_compute_queue); ac_pm4_finalize(pm4); radeon_check_space(device->ws, cs, pm4->ndw); radeon_emit_array(cs, pm4->pm4, pm4->ndw); ac_pm4_clear_state(pm4, &pdev->info, false, is_compute_queue); if (pdev->info.has_sqtt_rb_harvest_bug) { /* Some chips with disabled RBs should wait for idle because FINISH_DONE doesn't work. */ radv_emit_wait_for_idle(device, cs, qf); } ac_sqtt_emit_wait(&pdev->info, pm4, &device->sqtt, is_compute_queue); ac_pm4_finalize(pm4); radeon_check_space(device->ws, cs, pm4->ndw); radeon_emit_array(cs, pm4->pm4, pm4->ndw); ac_pm4_free_state(pm4); } void radv_emit_sqtt_userdata(const struct radv_cmd_buffer *cmd_buffer, const void *data, uint32_t num_dwords) { struct radv_device *device = radv_cmd_buffer_device(cmd_buffer); const struct radv_physical_device *pdev = radv_device_physical(device); const enum amd_gfx_level gfx_level = pdev->info.gfx_level; const enum radv_queue_family qf = cmd_buffer->qf; struct radeon_cmdbuf *cs = cmd_buffer->cs; const uint32_t *dwords = (uint32_t *)data; /* SQTT user data packets aren't supported on SDMA queues. */ if (cmd_buffer->qf == RADV_QUEUE_TRANSFER) return; while (num_dwords > 0) { uint32_t count = MIN2(num_dwords, 2); radeon_check_space(device->ws, cs, 2 + count); /* Without the perfctr bit the CP might not always pass the * write on correctly. */ if (pdev->info.gfx_level >= GFX10) radeon_set_uconfig_perfctr_reg_seq(gfx_level, qf, cs, R_030D08_SQ_THREAD_TRACE_USERDATA_2, count); else radeon_set_uconfig_reg_seq(cs, R_030D08_SQ_THREAD_TRACE_USERDATA_2, count); radeon_emit_array(cs, dwords, count); dwords += count; num_dwords -= count; } } void radv_emit_spi_config_cntl(const struct radv_device *device, struct radeon_cmdbuf *cs, bool enable) { const struct radv_physical_device *pdev = radv_device_physical(device); if (pdev->info.gfx_level >= GFX9) { uint32_t spi_config_cntl = S_031100_GPR_WRITE_PRIORITY(0x2c688) | S_031100_EXP_PRIORITY_ORDER(3) | S_031100_ENABLE_SQG_TOP_EVENTS(enable) | S_031100_ENABLE_SQG_BOP_EVENTS(enable); if (pdev->info.gfx_level >= GFX10) spi_config_cntl |= S_031100_PS_PKR_PRIORITY_CNTL(3); radeon_set_uconfig_reg(cs, R_031100_SPI_CONFIG_CNTL, spi_config_cntl); } else { /* SPI_CONFIG_CNTL is a protected register on GFX6-GFX8. */ radeon_set_privileged_config_reg(cs, R_009100_SPI_CONFIG_CNTL, S_009100_ENABLE_SQG_TOP_EVENTS(enable) | S_009100_ENABLE_SQG_BOP_EVENTS(enable)); } } void radv_emit_inhibit_clockgating(const struct radv_device *device, struct radeon_cmdbuf *cs, bool inhibit) { const struct radv_physical_device *pdev = radv_device_physical(device); if (pdev->info.gfx_level >= GFX11) return; /* not needed */ if (pdev->info.gfx_level >= GFX10) { radeon_set_uconfig_reg(cs, R_037390_RLC_PERFMON_CLK_CNTL, S_037390_PERFMON_CLOCK_STATE(inhibit)); } else if (pdev->info.gfx_level >= GFX8) { radeon_set_uconfig_reg(cs, R_0372FC_RLC_PERFMON_CLK_CNTL, S_0372FC_PERFMON_CLOCK_STATE(inhibit)); } } VkResult radv_sqtt_acquire_gpu_timestamp(struct radv_device *device, struct radeon_winsys_bo **gpu_timestamp_bo, uint32_t *gpu_timestamp_offset, void **gpu_timestamp_ptr) { simple_mtx_lock(&device->sqtt_timestamp_mtx); if (device->sqtt_timestamp.offset + 8 > device->sqtt_timestamp.size) { struct radeon_winsys_bo *bo; uint64_t new_size; VkResult result; uint8_t *map; new_size = MAX2(4096, 2 * device->sqtt_timestamp.size); result = radv_bo_create(device, NULL, new_size, 8, RADEON_DOMAIN_GTT, RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING, RADV_BO_PRIORITY_SCRATCH, 0, true, &bo); if (result != VK_SUCCESS) { simple_mtx_unlock(&device->sqtt_timestamp_mtx); return result; } map = radv_buffer_map(device->ws, bo); if (!map) { radv_bo_destroy(device, NULL, bo); simple_mtx_unlock(&device->sqtt_timestamp_mtx); return VK_ERROR_OUT_OF_DEVICE_MEMORY; } if (device->sqtt_timestamp.bo) { struct radv_sqtt_timestamp *new_timestamp; new_timestamp = malloc(sizeof(*new_timestamp)); if (!new_timestamp) { radv_bo_destroy(device, NULL, bo); simple_mtx_unlock(&device->sqtt_timestamp_mtx); return VK_ERROR_OUT_OF_HOST_MEMORY; } memcpy(new_timestamp, &device->sqtt_timestamp, sizeof(*new_timestamp)); list_add(&new_timestamp->list, &device->sqtt_timestamp.list); } device->sqtt_timestamp.bo = bo; device->sqtt_timestamp.size = new_size; device->sqtt_timestamp.offset = 0; device->sqtt_timestamp.map = map; } *gpu_timestamp_bo = device->sqtt_timestamp.bo; *gpu_timestamp_offset = device->sqtt_timestamp.offset; *gpu_timestamp_ptr = device->sqtt_timestamp.map + device->sqtt_timestamp.offset; device->sqtt_timestamp.offset += 8; simple_mtx_unlock(&device->sqtt_timestamp_mtx); return VK_SUCCESS; } static void radv_sqtt_reset_timestamp(struct radv_device *device) { simple_mtx_lock(&device->sqtt_timestamp_mtx); list_for_each_entry_safe (struct radv_sqtt_timestamp, ts, &device->sqtt_timestamp.list, list) { radv_bo_destroy(device, NULL, ts->bo); list_del(&ts->list); free(ts); } device->sqtt_timestamp.offset = 0; simple_mtx_unlock(&device->sqtt_timestamp_mtx); } static bool radv_sqtt_init_queue_event(struct radv_device *device) { const struct radv_physical_device *pdev = radv_device_physical(device); const struct radv_instance *instance = radv_physical_device_instance(pdev); VkCommandPool cmd_pool; VkResult result; const VkCommandPoolCreateInfo create_gfx_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, .queueFamilyIndex = RADV_QUEUE_GENERAL, /* Graphics queue is always the first queue. */ }; result = vk_common_CreateCommandPool(radv_device_to_handle(device), &create_gfx_info, NULL, &cmd_pool); if (result != VK_SUCCESS) return false; device->sqtt_command_pool[0] = vk_command_pool_from_handle(cmd_pool); if (!(instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE)) { const VkCommandPoolCreateInfo create_comp_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, .queueFamilyIndex = RADV_QUEUE_COMPUTE, }; result = vk_common_CreateCommandPool(radv_device_to_handle(device), &create_comp_info, NULL, &cmd_pool); if (result != VK_SUCCESS) return false; device->sqtt_command_pool[1] = vk_command_pool_from_handle(cmd_pool); } simple_mtx_init(&device->sqtt_command_pool_mtx, mtx_plain); simple_mtx_init(&device->sqtt_timestamp_mtx, mtx_plain); list_inithead(&device->sqtt_timestamp.list); return true; } static void radv_sqtt_finish_queue_event(struct radv_device *device) { if (device->sqtt_timestamp.bo) radv_bo_destroy(device, NULL, device->sqtt_timestamp.bo); simple_mtx_destroy(&device->sqtt_timestamp_mtx); for (unsigned i = 0; i < ARRAY_SIZE(device->sqtt_command_pool); i++) vk_common_DestroyCommandPool(radv_device_to_handle(device), vk_command_pool_to_handle(device->sqtt_command_pool[i]), NULL); simple_mtx_destroy(&device->sqtt_command_pool_mtx); } static bool radv_sqtt_init_bo(struct radv_device *device) { const struct radv_physical_device *pdev = radv_device_physical(device); unsigned max_se = pdev->info.max_se; struct radeon_winsys *ws = device->ws; VkResult result; uint64_t size; /* The buffer size and address need to be aligned in HW regs. Align the * size as early as possible so that we do all the allocation & addressing * correctly. */ device->sqtt.buffer_size = align64(device->sqtt.buffer_size, 1u << SQTT_BUFFER_ALIGN_SHIFT); /* Compute total size of the thread trace BO for all SEs. */ size = align64(sizeof(struct ac_sqtt_data_info) * max_se, 1 << SQTT_BUFFER_ALIGN_SHIFT); size += device->sqtt.buffer_size * (uint64_t)max_se; struct radeon_winsys_bo *bo = NULL; result = radv_bo_create(device, NULL, size, 4096, RADEON_DOMAIN_VRAM, RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_ZERO_VRAM, RADV_BO_PRIORITY_SCRATCH, 0, true, &bo); device->sqtt.bo = bo; if (result != VK_SUCCESS) return false; result = ws->buffer_make_resident(ws, device->sqtt.bo, true); if (result != VK_SUCCESS) return false; device->sqtt.ptr = radv_buffer_map(ws, device->sqtt.bo); if (!device->sqtt.ptr) return false; device->sqtt.buffer_va = radv_buffer_get_va(device->sqtt.bo); return true; } static void radv_sqtt_finish_bo(struct radv_device *device) { struct radeon_winsys *ws = device->ws; if (unlikely(device->sqtt.bo)) { ws->buffer_make_resident(ws, device->sqtt.bo, false); radv_bo_destroy(device, NULL, device->sqtt.bo); } } static VkResult radv_register_queue(struct radv_device *device, struct radv_queue *queue) { struct ac_sqtt *sqtt = &device->sqtt; struct rgp_queue_info *queue_info = &sqtt->rgp_queue_info; struct rgp_queue_info_record *record; record = malloc(sizeof(struct rgp_queue_info_record)); if (!record) return VK_ERROR_OUT_OF_HOST_MEMORY; record->queue_id = (uintptr_t)queue; record->queue_context = (uintptr_t)queue->hw_ctx; if (queue->vk.queue_family_index == RADV_QUEUE_GENERAL) { record->hardware_info.queue_type = SQTT_QUEUE_TYPE_UNIVERSAL; record->hardware_info.engine_type = SQTT_ENGINE_TYPE_UNIVERSAL; } else { record->hardware_info.queue_type = SQTT_QUEUE_TYPE_COMPUTE; record->hardware_info.engine_type = SQTT_ENGINE_TYPE_COMPUTE; } simple_mtx_lock(&queue_info->lock); list_addtail(&record->list, &queue_info->record); queue_info->record_count++; simple_mtx_unlock(&queue_info->lock); return VK_SUCCESS; } static void radv_unregister_queue(struct radv_device *device, struct radv_queue *queue) { struct ac_sqtt *sqtt = &device->sqtt; struct rgp_queue_info *queue_info = &sqtt->rgp_queue_info; /* Destroy queue info record. */ simple_mtx_lock(&queue_info->lock); if (queue_info->record_count > 0) { list_for_each_entry_safe (struct rgp_queue_info_record, record, &queue_info->record, list) { if (record->queue_id == (uintptr_t)queue) { queue_info->record_count--; list_del(&record->list); free(record); break; } } } simple_mtx_unlock(&queue_info->lock); } static void radv_register_queues(struct radv_device *device, struct ac_sqtt *sqtt) { if (device->queue_count[RADV_QUEUE_GENERAL] == 1) radv_register_queue(device, &device->queues[RADV_QUEUE_GENERAL][0]); for (uint32_t i = 0; i < device->queue_count[RADV_QUEUE_COMPUTE]; i++) radv_register_queue(device, &device->queues[RADV_QUEUE_COMPUTE][i]); } static void radv_unregister_queues(struct radv_device *device, struct ac_sqtt *sqtt) { if (device->queue_count[RADV_QUEUE_GENERAL] == 1) radv_unregister_queue(device, &device->queues[RADV_QUEUE_GENERAL][0]); for (uint32_t i = 0; i < device->queue_count[RADV_QUEUE_COMPUTE]; i++) radv_unregister_queue(device, &device->queues[RADV_QUEUE_COMPUTE][i]); } bool radv_sqtt_init(struct radv_device *device) { struct ac_sqtt *sqtt = &device->sqtt; /* Default buffer size set to 32MB per SE. */ device->sqtt.buffer_size = (uint32_t)debug_get_num_option("RADV_THREAD_TRACE_BUFFER_SIZE", 32 * 1024 * 1024); device->sqtt.instruction_timing_enabled = radv_is_instruction_timing_enabled(); if (!radv_sqtt_init_bo(device)) return false; if (!radv_sqtt_init_queue_event(device)) return false; if (!radv_device_acquire_performance_counters(device)) return false; ac_sqtt_init(sqtt); radv_register_queues(device, sqtt); return true; } void radv_sqtt_finish(struct radv_device *device) { struct ac_sqtt *sqtt = &device->sqtt; struct radeon_winsys *ws = device->ws; radv_sqtt_finish_bo(device); radv_sqtt_finish_queue_event(device); for (unsigned i = 0; i < 2; i++) { if (device->sqtt.start_cs[i]) ws->cs_destroy(device->sqtt.start_cs[i]); if (device->sqtt.stop_cs[i]) ws->cs_destroy(device->sqtt.stop_cs[i]); } radv_unregister_queues(device, sqtt); ac_sqtt_finish(sqtt); } static bool radv_sqtt_resize_bo(struct radv_device *device) { /* Destroy the previous thread trace BO. */ radv_sqtt_finish_bo(device); /* Double the size of the thread trace buffer per SE. */ device->sqtt.buffer_size *= 2; fprintf(stderr, "Failed to get the thread trace because the buffer " "was too small, resizing to %d KB\n", device->sqtt.buffer_size / 1024); /* Re-create the thread trace BO. */ return radv_sqtt_init_bo(device); } bool radv_begin_sqtt(struct radv_queue *queue) { struct radv_device *device = radv_queue_device(queue); const struct radv_physical_device *pdev = radv_device_physical(device); enum radv_queue_family family = queue->state.qf; struct radeon_winsys *ws = device->ws; struct radeon_cmdbuf *cs; VkResult result; /* Destroy the previous start CS and create a new one. */ if (device->sqtt.start_cs[family]) { ws->cs_destroy(device->sqtt.start_cs[family]); device->sqtt.start_cs[family] = NULL; } cs = ws->cs_create(ws, radv_queue_ring(queue), false); if (!cs) return false; radeon_check_space(ws, cs, 512); switch (family) { case RADV_QUEUE_GENERAL: radeon_emit(cs, PKT3(PKT3_CONTEXT_CONTROL, 1, 0)); radeon_emit(cs, CC0_UPDATE_LOAD_ENABLES(1)); radeon_emit(cs, CC1_UPDATE_SHADOW_ENABLES(1)); break; case RADV_QUEUE_COMPUTE: radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); radeon_emit(cs, 0); break; default: unreachable("Incorrect queue family"); break; } /* Make sure to wait-for-idle before starting SQTT. */ radv_emit_wait_for_idle(device, cs, family); /* Disable clock gating before starting SQTT. */ radv_emit_inhibit_clockgating(device, cs, true); /* Enable SQG events that collects thread trace data. */ radv_emit_spi_config_cntl(device, cs, true); radv_perfcounter_emit_spm_reset(cs); if (device->spm.bo) { /* Enable all shader stages by default. */ radv_perfcounter_emit_shaders(device, cs, ac_sqtt_get_shader_mask(&pdev->info)); radv_emit_spm_setup(device, cs, family); } /* Start SQTT. */ radv_emit_sqtt_start(device, cs, family); if (device->spm.bo) { radeon_check_space(ws, cs, 8); radv_perfcounter_emit_spm_start(device, cs, family); } result = ws->cs_finalize(cs); if (result != VK_SUCCESS) { ws->cs_destroy(cs); return false; } device->sqtt.start_cs[family] = cs; return radv_queue_internal_submit(queue, cs); } bool radv_end_sqtt(struct radv_queue *queue) { struct radv_device *device = radv_queue_device(queue); enum radv_queue_family family = queue->state.qf; struct radeon_winsys *ws = device->ws; struct radeon_cmdbuf *cs; VkResult result; /* Destroy the previous stop CS and create a new one. */ if (device->sqtt.stop_cs[family]) { ws->cs_destroy(device->sqtt.stop_cs[family]); device->sqtt.stop_cs[family] = NULL; } cs = ws->cs_create(ws, radv_queue_ring(queue), false); if (!cs) return false; radeon_check_space(ws, cs, 512); switch (family) { case RADV_QUEUE_GENERAL: radeon_emit(cs, PKT3(PKT3_CONTEXT_CONTROL, 1, 0)); radeon_emit(cs, CC0_UPDATE_LOAD_ENABLES(1)); radeon_emit(cs, CC1_UPDATE_SHADOW_ENABLES(1)); break; case RADV_QUEUE_COMPUTE: radeon_emit(cs, PKT3(PKT3_NOP, 0, 0)); radeon_emit(cs, 0); break; default: unreachable("Incorrect queue family"); break; } /* Make sure to wait-for-idle before stopping SQTT. */ radv_emit_wait_for_idle(device, cs, family); if (device->spm.bo) { radeon_check_space(ws, cs, 8); radv_perfcounter_emit_spm_stop(device, cs, family); } /* Stop SQTT. */ radv_emit_sqtt_stop(device, cs, family); radv_perfcounter_emit_spm_reset(cs); /* Restore previous state by disabling SQG events. */ radv_emit_spi_config_cntl(device, cs, false); /* Restore previous state by re-enabling clock gating. */ radv_emit_inhibit_clockgating(device, cs, false); result = ws->cs_finalize(cs); if (result != VK_SUCCESS) { ws->cs_destroy(cs); return false; } device->sqtt.stop_cs[family] = cs; return radv_queue_internal_submit(queue, cs); } bool radv_get_sqtt_trace(struct radv_queue *queue, struct ac_sqtt_trace *sqtt_trace) { struct radv_device *device = radv_queue_device(queue); const struct radv_physical_device *pdev = radv_device_physical(device); const struct radeon_info *gpu_info = &pdev->info; if (!ac_sqtt_get_trace(&device->sqtt, gpu_info, sqtt_trace)) { if (!radv_sqtt_resize_bo(device)) fprintf(stderr, "radv: Failed to resize the SQTT buffer.\n"); return false; } return true; } void radv_reset_sqtt_trace(struct radv_device *device) { struct ac_sqtt *sqtt = &device->sqtt; struct rgp_clock_calibration *clock_calibration = &sqtt->rgp_clock_calibration; struct rgp_queue_event *queue_event = &sqtt->rgp_queue_event; /* Clear clock calibration records. */ simple_mtx_lock(&clock_calibration->lock); list_for_each_entry_safe (struct rgp_clock_calibration_record, record, &clock_calibration->record, list) { clock_calibration->record_count--; list_del(&record->list); free(record); } simple_mtx_unlock(&clock_calibration->lock); /* Clear queue event records. */ simple_mtx_lock(&queue_event->lock); list_for_each_entry_safe (struct rgp_queue_event_record, record, &queue_event->record, list) { list_del(&record->list); free(record); } queue_event->record_count = 0; simple_mtx_unlock(&queue_event->lock); /* Clear timestamps. */ radv_sqtt_reset_timestamp(device); /* Clear timed cmdbufs. */ simple_mtx_lock(&device->sqtt_command_pool_mtx); for (unsigned i = 0; i < ARRAY_SIZE(device->sqtt_command_pool); i++) { /* If RADV_DEBUG_NO_COMPUTE_QUEUE is used, there's no compute sqtt command pool */ if (device->sqtt_command_pool[i]) vk_common_TrimCommandPool(radv_device_to_handle(device), vk_command_pool_to_handle(device->sqtt_command_pool[i]), 0); } simple_mtx_unlock(&device->sqtt_command_pool_mtx); } static VkResult radv_get_calibrated_timestamps(struct radv_device *device, uint64_t *cpu_timestamp, uint64_t *gpu_timestamp) { uint64_t timestamps[2]; uint64_t max_deviation; VkResult result; const VkCalibratedTimestampInfoKHR timestamp_infos[2] = {{ .sType = VK_STRUCTURE_TYPE_CALIBRATED_TIMESTAMP_INFO_KHR, .timeDomain = VK_TIME_DOMAIN_CLOCK_MONOTONIC_KHR, }, { .sType = VK_STRUCTURE_TYPE_CALIBRATED_TIMESTAMP_INFO_KHR, .timeDomain = VK_TIME_DOMAIN_DEVICE_KHR, }}; result = radv_GetCalibratedTimestampsKHR(radv_device_to_handle(device), 2, timestamp_infos, timestamps, &max_deviation); if (result != VK_SUCCESS) return result; *cpu_timestamp = timestamps[0]; *gpu_timestamp = timestamps[1]; return result; } bool radv_sqtt_sample_clocks(struct radv_device *device) { uint64_t cpu_timestamp = 0, gpu_timestamp = 0; VkResult result; result = radv_get_calibrated_timestamps(device, &cpu_timestamp, &gpu_timestamp); if (result != VK_SUCCESS) return false; return ac_sqtt_add_clock_calibration(&device->sqtt, cpu_timestamp, gpu_timestamp); } VkResult radv_sqtt_get_timed_cmdbuf(struct radv_queue *queue, struct radeon_winsys_bo *timestamp_bo, uint32_t timestamp_offset, VkPipelineStageFlags2 timestamp_stage, VkCommandBuffer *pcmdbuf) { struct radv_device *device = radv_queue_device(queue); enum radv_queue_family queue_family = queue->state.qf; VkCommandBuffer cmdbuf; uint64_t timestamp_va; VkResult result; assert(queue_family == RADV_QUEUE_GENERAL || queue_family == RADV_QUEUE_COMPUTE); simple_mtx_lock(&device->sqtt_command_pool_mtx); const VkCommandBufferAllocateInfo alloc_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, .commandPool = vk_command_pool_to_handle(device->sqtt_command_pool[queue_family]), .level = VK_COMMAND_BUFFER_LEVEL_PRIMARY, .commandBufferCount = 1, }; result = vk_common_AllocateCommandBuffers(radv_device_to_handle(device), &alloc_info, &cmdbuf); if (result != VK_SUCCESS) goto fail; const VkCommandBufferBeginInfo begin_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, .flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT, }; result = radv_BeginCommandBuffer(cmdbuf, &begin_info); if (result != VK_SUCCESS) goto fail; radeon_check_space(device->ws, radv_cmd_buffer_from_handle(cmdbuf)->cs, 28); timestamp_va = radv_buffer_get_va(timestamp_bo) + timestamp_offset; radv_cs_add_buffer(device->ws, radv_cmd_buffer_from_handle(cmdbuf)->cs, timestamp_bo); radv_write_timestamp(radv_cmd_buffer_from_handle(cmdbuf), timestamp_va, timestamp_stage); result = radv_EndCommandBuffer(cmdbuf); if (result != VK_SUCCESS) goto fail; *pcmdbuf = cmdbuf; fail: simple_mtx_unlock(&device->sqtt_command_pool_mtx); return result; }