/* * Copyright © 2015 Intel Corporation * * SPDX-License-Identifier: MIT */ #include "radv_pipeline_cache.h" #include "util/disk_cache.h" #include "util/macros.h" #include "util/mesa-blake3.h" #include "util/mesa-sha1.h" #include "util/u_atomic.h" #include "util/u_debug.h" #include "nir_serialize.h" #include "radv_debug.h" #include "radv_descriptor_set.h" #include "radv_pipeline.h" #include "radv_pipeline_compute.h" #include "radv_pipeline_graphics.h" #include "radv_pipeline_binary.h" #include "radv_pipeline_rt.h" #include "radv_shader.h" #include "vk_pipeline.h" #include "vk_util.h" #include "aco_interface.h" void radv_hash_graphics_spirv_to_nir(blake3_hash hash, const struct radv_shader_stage *stage, const struct radv_spirv_to_nir_options *options) { struct mesa_blake3 ctx; _mesa_blake3_init(&ctx); _mesa_blake3_update(&ctx, &stage->key, sizeof(stage->key)); _mesa_blake3_update(&ctx, options, sizeof(*options)); _mesa_blake3_update(&ctx, stage->shader_sha1, sizeof(stage->shader_sha1)); _mesa_blake3_final(&ctx, hash); } static void radv_shader_destroy(struct vk_device *_device, struct vk_pipeline_cache_object *object) { struct radv_device *device = container_of(_device, struct radv_device, vk); struct radv_shader *shader = container_of(object, struct radv_shader, base); if (device->shader_use_invisible_vram) { /* Wait for any pending upload to complete, or we'll be writing into freed shader memory. */ radv_shader_wait_for_upload(device, shader->upload_seq); } radv_free_shader_memory(device, shader->alloc); free(shader->code); free(shader->spirv); free(shader->nir_string); free(shader->disasm_string); free(shader->ir_string); free(shader->statistics); vk_pipeline_cache_object_finish(&shader->base); free(shader); } struct radv_shader * radv_shader_deserialize(struct radv_device *device, const void *key_data, size_t key_size, struct blob_reader *blob) { const struct radv_shader_binary *binary = blob_read_bytes(blob, sizeof(struct radv_shader_binary)); struct radv_shader *shader; radv_shader_create_uncached(device, binary, false, NULL, &shader); if (!shader) return NULL; assert(key_size == sizeof(shader->hash)); memcpy(shader->hash, key_data, key_size); blob_skip_bytes(blob, binary->total_size - sizeof(struct radv_shader_binary)); return shader; } static struct vk_pipeline_cache_object * radv_shader_cache_deserialize(struct vk_pipeline_cache *cache, const void *key_data, size_t key_size, struct blob_reader *blob) { struct radv_device *device = container_of(cache->base.device, struct radv_device, vk); struct radv_shader *shader; shader = radv_shader_deserialize(device, key_data, key_size, blob); return shader ? &shader->base : NULL; } void radv_shader_serialize(struct radv_shader *shader, struct blob *blob) { size_t stats_size = shader->statistics ? aco_num_statistics * sizeof(uint32_t) : 0; size_t code_size = shader->code_size; uint32_t total_size = sizeof(struct radv_shader_binary_legacy) + code_size + stats_size; struct radv_shader_binary_legacy binary = { .base = { .type = RADV_BINARY_TYPE_LEGACY, .config = shader->config, .info = shader->info, .total_size = total_size, }, .code_size = code_size, .exec_size = shader->exec_size, .ir_size = 0, .disasm_size = 0, .stats_size = stats_size, }; blob_write_bytes(blob, &binary, sizeof(struct radv_shader_binary_legacy)); blob_write_bytes(blob, shader->statistics, stats_size); blob_write_bytes(blob, shader->code, code_size); } static bool radv_shader_cache_serialize(struct vk_pipeline_cache_object *object, struct blob *blob) { struct radv_shader *shader = container_of(object, struct radv_shader, base); radv_shader_serialize(shader, blob); return true; } static bool radv_is_cache_disabled(const struct radv_device *device, const struct vk_pipeline_cache *cache) { const struct radv_physical_device *pdev = radv_device_physical(device); const struct radv_instance *instance = radv_physical_device_instance(pdev); /* The buffer address used for debug printf is hardcoded. */ if (device->printf.buffer_addr) return true; /* Pipeline caches can be disabled with RADV_DEBUG=nocache, with MESA_GLSL_CACHE_DISABLE=1 and * when ACO_DEBUG is used. MESA_GLSL_CACHE_DISABLE is done elsewhere. */ if ((instance->debug_flags & RADV_DEBUG_NO_CACHE) || (pdev->use_llvm ? 0 : aco_get_codegen_flags())) return true; if (!cache) { /* When the application doesn't provide a pipeline cache and the in-memory cache is also * disabled. */ cache = device->mem_cache; if (!cache) return true; } return false; } struct radv_shader * radv_shader_create(struct radv_device *device, struct vk_pipeline_cache *cache, const struct radv_shader_binary *binary, bool skip_cache) { if (radv_is_cache_disabled(device, cache) || skip_cache) { struct radv_shader *shader; radv_shader_create_uncached(device, binary, false, NULL, &shader); return shader; } if (!cache) cache = device->mem_cache; blake3_hash hash; _mesa_blake3_compute(binary, binary->total_size, hash); struct vk_pipeline_cache_object *shader_obj; shader_obj = vk_pipeline_cache_create_and_insert_object(cache, hash, sizeof(hash), binary, binary->total_size, &radv_shader_ops); return shader_obj ? container_of(shader_obj, struct radv_shader, base) : NULL; } const struct vk_pipeline_cache_object_ops radv_shader_ops = { .serialize = radv_shader_cache_serialize, .deserialize = radv_shader_cache_deserialize, .destroy = radv_shader_destroy, }; struct radv_pipeline_cache_object { struct vk_pipeline_cache_object base; unsigned num_shaders; uint32_t data_size; void *data; /* Generic data stored alongside the shaders */ uint8_t sha1[SHA1_DIGEST_LENGTH]; struct radv_shader *shaders[]; }; const struct vk_pipeline_cache_object_ops radv_pipeline_ops; static struct radv_pipeline_cache_object * radv_pipeline_cache_object_create(struct vk_device *device, unsigned num_shaders, const void *hash, unsigned data_size) { const size_t size = sizeof(struct radv_pipeline_cache_object) + (num_shaders * sizeof(struct radv_shader *)) + data_size; struct radv_pipeline_cache_object *object = vk_alloc(&device->alloc, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_CACHE); if (!object) return NULL; vk_pipeline_cache_object_init(device, &object->base, &radv_pipeline_ops, object->sha1, SHA1_DIGEST_LENGTH); object->num_shaders = num_shaders; object->data = &object->shaders[num_shaders]; object->data_size = data_size; memcpy(object->sha1, hash, SHA1_DIGEST_LENGTH); memset(object->shaders, 0, sizeof(object->shaders[0]) * num_shaders); memset(object->data, 0, data_size); return object; } static void radv_pipeline_cache_object_destroy(struct vk_device *_device, struct vk_pipeline_cache_object *object) { struct radv_device *device = container_of(_device, struct radv_device, vk); struct radv_pipeline_cache_object *pipeline_obj = container_of(object, struct radv_pipeline_cache_object, base); for (unsigned i = 0; i < pipeline_obj->num_shaders; i++) { if (pipeline_obj->shaders[i]) radv_shader_unref(device, pipeline_obj->shaders[i]); } vk_pipeline_cache_object_finish(&pipeline_obj->base); vk_free(&_device->alloc, pipeline_obj); } static struct vk_pipeline_cache_object * radv_pipeline_cache_object_deserialize(struct vk_pipeline_cache *cache, const void *key_data, size_t key_size, struct blob_reader *blob) { struct radv_device *device = container_of(cache->base.device, struct radv_device, vk); assert(key_size == SHA1_DIGEST_LENGTH); unsigned total_size = blob->end - blob->current; unsigned num_shaders = blob_read_uint32(blob); unsigned data_size = blob_read_uint32(blob); struct radv_pipeline_cache_object *object; object = radv_pipeline_cache_object_create(&device->vk, num_shaders, key_data, data_size); if (!object) return NULL; object->base.data_size = total_size; for (unsigned i = 0; i < num_shaders; i++) { const uint8_t *hash = blob_read_bytes(blob, sizeof(blake3_hash)); struct vk_pipeline_cache_object *shader = vk_pipeline_cache_lookup_object(cache, hash, sizeof(blake3_hash), &radv_shader_ops, NULL); if (!shader) { /* If some shader could not be created from cache, better return NULL here than having * an incomplete cache object which needs to be fixed up later. */ vk_pipeline_cache_object_unref(&device->vk, &object->base); return NULL; } object->shaders[i] = container_of(shader, struct radv_shader, base); } blob_copy_bytes(blob, object->data, data_size); return &object->base; } static bool radv_pipeline_cache_object_serialize(struct vk_pipeline_cache_object *object, struct blob *blob) { struct radv_pipeline_cache_object *pipeline_obj = container_of(object, struct radv_pipeline_cache_object, base); blob_write_uint32(blob, pipeline_obj->num_shaders); blob_write_uint32(blob, pipeline_obj->data_size); for (unsigned i = 0; i < pipeline_obj->num_shaders; i++) blob_write_bytes(blob, pipeline_obj->shaders[i]->hash, sizeof(pipeline_obj->shaders[i]->hash)); blob_write_bytes(blob, pipeline_obj->data, pipeline_obj->data_size); return true; } const struct vk_pipeline_cache_object_ops radv_pipeline_ops = { .serialize = radv_pipeline_cache_object_serialize, .deserialize = radv_pipeline_cache_object_deserialize, .destroy = radv_pipeline_cache_object_destroy, }; static void radv_report_pso_cache_stats(struct radv_device *device, const struct radv_pipeline *pipeline, bool cache_hit) { const struct radv_physical_device *pdev = radv_device_physical(device); const struct radv_instance *instance = radv_physical_device_instance(pdev); if (!(instance->debug_flags & RADV_DEBUG_PSO_CACHE_STATS)) return; /* Only gather PSO cache stats for application pipelines. */ if (pipeline->is_internal) return; assert(pipeline->type < ARRAY_SIZE(device->pso_cache_stats)); simple_mtx_lock(&device->pso_cache_stats_mtx); if (cache_hit) { device->pso_cache_stats[pipeline->type].hits++; } else { device->pso_cache_stats[pipeline->type].misses++; } fprintf( stderr, "radv: PSO cache stats: gfx (hits=%d, misses=%d), gfx_lib (hits=%d, misses=%d), compute (hits=%d, misses=%d), rt " "(hits=%d, misses=%d)\nt", device->pso_cache_stats[RADV_PIPELINE_GRAPHICS].hits, device->pso_cache_stats[RADV_PIPELINE_GRAPHICS].misses, device->pso_cache_stats[RADV_PIPELINE_GRAPHICS_LIB].hits, device->pso_cache_stats[RADV_PIPELINE_GRAPHICS_LIB].misses, device->pso_cache_stats[RADV_PIPELINE_COMPUTE].hits, device->pso_cache_stats[RADV_PIPELINE_COMPUTE].misses, device->pso_cache_stats[RADV_PIPELINE_RAY_TRACING].hits, device->pso_cache_stats[RADV_PIPELINE_RAY_TRACING].misses); simple_mtx_unlock(&device->pso_cache_stats_mtx); } static struct radv_pipeline_cache_object * radv_pipeline_cache_object_search(struct radv_device *device, struct vk_pipeline_cache *cache, const struct radv_pipeline *pipeline, bool *found_in_application_cache) { *found_in_application_cache = false; if (radv_is_cache_disabled(device, cache)) return false; bool *found = found_in_application_cache; if (!cache) { cache = device->mem_cache; found = NULL; } struct vk_pipeline_cache_object *object = vk_pipeline_cache_lookup_object(cache, pipeline->sha1, SHA1_DIGEST_LENGTH, &radv_pipeline_ops, found); radv_report_pso_cache_stats(device, pipeline, !!object); if (!object) return false; return container_of(object, struct radv_pipeline_cache_object, base); } bool radv_graphics_pipeline_cache_search(struct radv_device *device, struct vk_pipeline_cache *cache, struct radv_graphics_pipeline *pipeline, bool *found_in_application_cache) { struct radv_pipeline_cache_object *pipeline_obj; pipeline_obj = radv_pipeline_cache_object_search(device, cache, &pipeline->base, found_in_application_cache); if (!pipeline_obj) return false; for (unsigned i = 0; i < pipeline_obj->num_shaders; i++) { gl_shader_stage s = pipeline_obj->shaders[i]->info.stage; if (s == MESA_SHADER_VERTEX && i > 0) { /* The GS copy-shader is a VS placed after all other stages */ assert(i == pipeline_obj->num_shaders - 1 && pipeline->base.shaders[MESA_SHADER_GEOMETRY]); pipeline->base.gs_copy_shader = radv_shader_ref(pipeline_obj->shaders[i]); } else { pipeline->base.shaders[s] = radv_shader_ref(pipeline_obj->shaders[i]); } } pipeline->base.cache_object = &pipeline_obj->base; return true; } bool radv_compute_pipeline_cache_search(struct radv_device *device, struct vk_pipeline_cache *cache, struct radv_compute_pipeline *pipeline, bool *found_in_application_cache) { struct radv_pipeline_cache_object *pipeline_obj; pipeline_obj = radv_pipeline_cache_object_search(device, cache, &pipeline->base, found_in_application_cache); if (!pipeline_obj) return false; assert(pipeline_obj->num_shaders == 1); pipeline->base.shaders[MESA_SHADER_COMPUTE] = radv_shader_ref(pipeline_obj->shaders[0]); pipeline->base.cache_object = &pipeline_obj->base; return true; } void radv_pipeline_cache_insert(struct radv_device *device, struct vk_pipeline_cache *cache, struct radv_pipeline *pipeline) { if (radv_is_cache_disabled(device, cache)) return; if (!cache) cache = device->mem_cache; /* Count shaders */ unsigned num_shaders = 0; for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) num_shaders += pipeline->shaders[i] ? 1 : 0; num_shaders += pipeline->gs_copy_shader ? 1 : 0; struct radv_pipeline_cache_object *pipeline_obj; pipeline_obj = radv_pipeline_cache_object_create(&device->vk, num_shaders, pipeline->sha1, 0); if (!pipeline_obj) return; unsigned idx = 0; for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) { if (pipeline->shaders[i]) pipeline_obj->shaders[idx++] = radv_shader_ref(pipeline->shaders[i]); } /* Place the GS copy-shader after all other stages */ if (pipeline->gs_copy_shader) pipeline_obj->shaders[idx++] = radv_shader_ref(pipeline->gs_copy_shader); assert(idx == num_shaders); /* Add the object to the cache */ pipeline->cache_object = vk_pipeline_cache_add_object(cache, &pipeline_obj->base); } struct radv_ray_tracing_stage_cache_data { uint32_t stack_size : 31; uint32_t has_shader : 1; uint8_t sha1[SHA1_DIGEST_LENGTH]; struct radv_ray_tracing_stage_info info; }; struct radv_ray_tracing_pipeline_cache_data { uint32_t has_traversal_shader : 1; uint32_t is_library : 1; uint32_t num_stages; struct radv_ray_tracing_stage_cache_data stages[]; }; bool radv_ray_tracing_pipeline_cache_search(struct radv_device *device, struct vk_pipeline_cache *cache, struct radv_ray_tracing_pipeline *pipeline, bool *found_in_application_cache) { struct radv_pipeline_cache_object *pipeline_obj; pipeline_obj = radv_pipeline_cache_object_search(device, cache, &pipeline->base.base, found_in_application_cache); if (!pipeline_obj) return false; struct radv_ray_tracing_pipeline_cache_data *data = pipeline_obj->data; bool complete = true; unsigned idx = 0; if (data->has_traversal_shader) pipeline->base.base.shaders[MESA_SHADER_INTERSECTION] = radv_shader_ref(pipeline_obj->shaders[idx++]); const uint32_t num_stages = data->num_stages; for (unsigned i = 0; i < num_stages; i++) { pipeline->stages[i].stack_size = data->stages[i].stack_size; pipeline->stages[i].info = data->stages[i].info; memcpy(pipeline->stages[i].sha1, data->stages[i].sha1, sizeof(pipeline->stages[i].sha1)); if (data->stages[i].has_shader) pipeline->stages[i].shader = radv_shader_ref(pipeline_obj->shaders[idx++]); if (data->is_library) { pipeline->stages[i].nir = radv_pipeline_cache_lookup_nir_handle(device, cache, pipeline->stages[i].sha1); complete &= pipeline->stages[i].nir != NULL; } } assert(idx == pipeline_obj->num_shaders); pipeline->base.base.cache_object = &pipeline_obj->base; return complete; } void radv_ray_tracing_pipeline_cache_insert(struct radv_device *device, struct vk_pipeline_cache *cache, struct radv_ray_tracing_pipeline *pipeline, unsigned num_stages) { if (radv_is_cache_disabled(device, cache)) return; if (!cache) cache = device->mem_cache; /* Skip insertion on cache hit. * This branch can be triggered if a cache_object was found but not all NIR shaders could be * looked up. The cache_object is already complete in that case. */ if (pipeline->base.base.cache_object) return; /* Count compiled shaders excl. library shaders */ unsigned num_shaders = pipeline->base.base.shaders[MESA_SHADER_INTERSECTION] ? 1 : 0; for (unsigned i = 0; i < num_stages; ++i) num_shaders += pipeline->stages[i].shader ? 1 : 0; uint32_t data_size = sizeof(struct radv_ray_tracing_pipeline_cache_data) + num_stages * sizeof(struct radv_ray_tracing_stage_cache_data); struct radv_pipeline_cache_object *pipeline_obj = radv_pipeline_cache_object_create(&device->vk, num_shaders, pipeline->base.base.sha1, data_size); struct radv_ray_tracing_pipeline_cache_data *data = pipeline_obj->data; data->is_library = !!(pipeline->base.base.create_flags & VK_PIPELINE_CREATE_2_LIBRARY_BIT_KHR); data->has_traversal_shader = !!pipeline->base.base.shaders[MESA_SHADER_INTERSECTION]; unsigned idx = 0; if (data->has_traversal_shader) pipeline_obj->shaders[idx++] = radv_shader_ref(pipeline->base.base.shaders[MESA_SHADER_INTERSECTION]); data->num_stages = num_stages; for (unsigned i = 0; i < num_stages; ++i) { data->stages[i].stack_size = pipeline->stages[i].stack_size; data->stages[i].info = pipeline->stages[i].info; data->stages[i].has_shader = !!pipeline->stages[i].shader; memcpy(data->stages[i].sha1, pipeline->stages[i].sha1, sizeof(pipeline->stages[i].sha1)); if (pipeline->stages[i].shader) pipeline_obj->shaders[idx++] = radv_shader_ref(pipeline->stages[i].shader); } assert(idx == num_shaders); /* Add the object to the cache */ pipeline->base.base.cache_object = vk_pipeline_cache_add_object(cache, &pipeline_obj->base); } nir_shader * radv_pipeline_cache_lookup_nir(struct radv_device *device, struct vk_pipeline_cache *cache, gl_shader_stage stage, const blake3_hash key) { const struct radv_physical_device *pdev = radv_device_physical(device); if (radv_is_cache_disabled(device, cache)) return NULL; if (!cache) cache = device->mem_cache; return vk_pipeline_cache_lookup_nir(cache, key, sizeof(blake3_hash), &pdev->nir_options[stage], NULL, NULL); } void radv_pipeline_cache_insert_nir(struct radv_device *device, struct vk_pipeline_cache *cache, const blake3_hash key, const nir_shader *nir) { if (radv_is_cache_disabled(device, cache)) return; if (!cache) cache = device->mem_cache; vk_pipeline_cache_add_nir(cache, key, sizeof(blake3_hash), nir); } struct vk_pipeline_cache_object * radv_pipeline_cache_lookup_nir_handle(struct radv_device *device, struct vk_pipeline_cache *cache, const uint8_t *sha1) { if (radv_is_cache_disabled(device, cache)) return NULL; if (!cache) cache = device->mem_cache; return vk_pipeline_cache_lookup_object(cache, sha1, SHA1_DIGEST_LENGTH, &vk_raw_data_cache_object_ops, NULL); } struct nir_shader * radv_pipeline_cache_handle_to_nir(struct radv_device *device, struct vk_pipeline_cache_object *object) { const struct radv_physical_device *pdev = radv_device_physical(device); struct blob_reader blob; struct vk_raw_data_cache_object *nir_object = container_of(object, struct vk_raw_data_cache_object, base); blob_reader_init(&blob, nir_object->data, nir_object->data_size); nir_shader *nir = nir_deserialize(NULL, NULL, &blob); if (blob.overrun) { ralloc_free(nir); return NULL; } nir->options = &pdev->nir_options[nir->info.stage]; return nir; } struct vk_pipeline_cache_object * radv_pipeline_cache_nir_to_handle(struct radv_device *device, struct vk_pipeline_cache *cache, struct nir_shader *nir, const uint8_t *sha1, bool cached) { if (!cache) cache = device->mem_cache; struct blob blob; blob_init(&blob); nir_serialize(&blob, nir, true); if (blob.out_of_memory) { blob_finish(&blob); return NULL; } void *data; size_t size; blob_finish_get_buffer(&blob, &data, &size); struct vk_pipeline_cache_object *object; if (cached && !radv_is_cache_disabled(device, cache)) { object = vk_pipeline_cache_create_and_insert_object(cache, sha1, SHA1_DIGEST_LENGTH, data, size, &vk_raw_data_cache_object_ops); } else { struct vk_raw_data_cache_object *nir_object = vk_raw_data_cache_object_create(&device->vk, sha1, SHA1_DIGEST_LENGTH, data, size); object = nir_object ? &nir_object->base : NULL; } free(data); return object; } VkResult radv_pipeline_cache_get_binaries(struct radv_device *device, const VkAllocationCallbacks *pAllocator, const unsigned char *sha1, struct util_dynarray *pipeline_binaries, uint32_t *num_binaries, bool *found_in_internal_cache) { struct vk_pipeline_cache *cache = device->mem_cache; VkResult result; *found_in_internal_cache = false; if (radv_is_cache_disabled(device, cache)) return VK_SUCCESS; struct vk_pipeline_cache_object *object = vk_pipeline_cache_lookup_object(cache, sha1, SHA1_DIGEST_LENGTH, &radv_pipeline_ops, NULL); if (!object) return VK_SUCCESS; struct radv_pipeline_cache_object *pipeline_obj = container_of(object, struct radv_pipeline_cache_object, base); bool complete = true; bool is_rt = false; for (unsigned i = 0; i < pipeline_obj->num_shaders; i++) { if (gl_shader_stage_is_rt(pipeline_obj->shaders[i]->info.stage)) { is_rt = true; break; } } if (is_rt) { struct radv_ray_tracing_pipeline_cache_data *data = pipeline_obj->data; struct radv_shader *traversal_shader = NULL; unsigned idx = 0; if (data->has_traversal_shader) traversal_shader = pipeline_obj->shaders[idx++]; for (unsigned i = 0; i < data->num_stages; i++) { const struct radv_ray_tracing_stage_cache_data *stage_data = &data->stages[i]; struct vk_pipeline_cache_object *nir = NULL; struct radv_shader *shader = NULL; if (stage_data->has_shader) shader = pipeline_obj->shaders[idx++]; if (data->is_library) nir = radv_pipeline_cache_lookup_nir_handle(device, cache, data->stages[i].sha1); result = radv_create_pipeline_binary_from_rt_shader(device, pAllocator, shader, false, data->stages[i].sha1, &stage_data->info, stage_data->stack_size, nir, pipeline_binaries, num_binaries); if (data->is_library) complete &= nir != NULL; if (nir) vk_pipeline_cache_object_unref(&device->vk, nir); if (result != VK_SUCCESS) goto fail; } if (traversal_shader) { result = radv_create_pipeline_binary_from_rt_shader(device, pAllocator, traversal_shader, true, traversal_shader->hash, NULL, 0, NULL, pipeline_binaries, num_binaries); if (result != VK_SUCCESS) goto fail; } } else { struct radv_shader *gs_copy_shader = NULL; for (unsigned i = 0; i < pipeline_obj->num_shaders; i++) { struct radv_shader *shader = pipeline_obj->shaders[i]; gl_shader_stage s = shader->info.stage; if (s == MESA_SHADER_VERTEX && i > 0) { /* The GS copy-shader is a VS placed after all other stages */ gs_copy_shader = shader; } else { result = radv_create_pipeline_binary_from_shader(device, pAllocator, shader, pipeline_binaries, num_binaries); if (result != VK_SUCCESS) goto fail; } } if (gs_copy_shader) { result = radv_create_pipeline_binary_from_shader(device, pAllocator, gs_copy_shader, pipeline_binaries, num_binaries); if (result != VK_SUCCESS) goto fail; } } *found_in_internal_cache = complete; fail: vk_pipeline_cache_object_unref(&device->vk, &pipeline_obj->base); return result; }