/* * Copyright © 2016 Red Hat. * Copyright © 2016 Bas Nieuwenhuizen * * based in part on anv driver which is: * Copyright © 2015 Intel Corporation * * SPDX-License-Identifier: MIT */ #include #include #ifndef _WIN32 #include #endif #include #include "util/mesa-sha1.h" #include "util/os_time.h" #include "ac_debug.h" #include "ac_descriptors.h" #include "radv_buffer.h" #include "radv_debug.h" #include "radv_descriptor_set.h" #include "radv_entrypoints.h" #include "radv_pipeline_graphics.h" #include "radv_pipeline_rt.h" #include "radv_shader.h" #include "sid.h" #include "spirv/nir_spirv.h" #define TMA_BO_SIZE 4096 #define COLOR_RESET "\033[0m" #define COLOR_RED "\033[31m" #define COLOR_GREEN "\033[1;32m" #define COLOR_YELLOW "\033[1;33m" #define COLOR_CYAN "\033[1;36m" #define RADV_DUMP_DIR "radv_dumps" bool radv_init_trace(struct radv_device *device) { struct radeon_winsys *ws = device->ws; VkResult result; result = radv_bo_create( device, NULL, sizeof(struct radv_trace_data), 8, RADEON_DOMAIN_VRAM, RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_ZERO_VRAM | RADEON_FLAG_VA_UNCACHED, RADV_BO_PRIORITY_UPLOAD_BUFFER, 0, true, &device->trace_bo); if (result != VK_SUCCESS) return false; result = ws->buffer_make_resident(ws, device->trace_bo, true); if (result != VK_SUCCESS) return false; device->trace_data = radv_buffer_map(ws, device->trace_bo); if (!device->trace_data) return false; return true; } void radv_finish_trace(struct radv_device *device) { struct radeon_winsys *ws = device->ws; if (unlikely(device->trace_bo)) { ws->buffer_make_resident(ws, device->trace_bo, false); radv_bo_destroy(device, NULL, device->trace_bo); } } static void radv_dump_trace(const struct radv_device *device, struct radeon_cmdbuf *cs, FILE *f) { fprintf(f, "Trace ID: %x\n", device->trace_data->primary_id); device->ws->cs_dump(cs, f, (const int *)&device->trace_data->primary_id, 2, RADV_CS_DUMP_TYPE_IBS); } static void radv_dump_mmapped_reg(const struct radv_device *device, FILE *f, unsigned offset) { const struct radv_physical_device *pdev = radv_device_physical(device); struct radeon_winsys *ws = device->ws; uint32_t value; if (ws->read_registers(ws, offset, 1, &value)) ac_dump_reg(f, pdev->info.gfx_level, pdev->info.family, offset, value, ~0); } static void radv_dump_debug_registers(const struct radv_device *device, FILE *f) { const struct radv_physical_device *pdev = radv_device_physical(device); const struct radeon_info *gpu_info = &pdev->info; fprintf(f, "Memory-mapped registers:\n"); radv_dump_mmapped_reg(device, f, R_008010_GRBM_STATUS); radv_dump_mmapped_reg(device, f, R_008008_GRBM_STATUS2); radv_dump_mmapped_reg(device, f, R_008014_GRBM_STATUS_SE0); radv_dump_mmapped_reg(device, f, R_008018_GRBM_STATUS_SE1); radv_dump_mmapped_reg(device, f, R_008038_GRBM_STATUS_SE2); radv_dump_mmapped_reg(device, f, R_00803C_GRBM_STATUS_SE3); radv_dump_mmapped_reg(device, f, R_00D034_SDMA0_STATUS_REG); radv_dump_mmapped_reg(device, f, R_00D834_SDMA1_STATUS_REG); if (gpu_info->gfx_level <= GFX8) { radv_dump_mmapped_reg(device, f, R_000E50_SRBM_STATUS); radv_dump_mmapped_reg(device, f, R_000E4C_SRBM_STATUS2); radv_dump_mmapped_reg(device, f, R_000E54_SRBM_STATUS3); } radv_dump_mmapped_reg(device, f, R_008680_CP_STAT); radv_dump_mmapped_reg(device, f, R_008674_CP_STALLED_STAT1); radv_dump_mmapped_reg(device, f, R_008678_CP_STALLED_STAT2); radv_dump_mmapped_reg(device, f, R_008670_CP_STALLED_STAT3); radv_dump_mmapped_reg(device, f, R_008210_CP_CPC_STATUS); radv_dump_mmapped_reg(device, f, R_008214_CP_CPC_BUSY_STAT); radv_dump_mmapped_reg(device, f, R_008218_CP_CPC_STALLED_STAT1); radv_dump_mmapped_reg(device, f, R_00821C_CP_CPF_STATUS); radv_dump_mmapped_reg(device, f, R_008220_CP_CPF_BUSY_STAT); radv_dump_mmapped_reg(device, f, R_008224_CP_CPF_STALLED_STAT1); fprintf(f, "\n"); } static void radv_dump_buffer_descriptor(enum amd_gfx_level gfx_level, enum radeon_family family, const uint32_t *desc, FILE *f) { fprintf(f, COLOR_CYAN "Buffer:" COLOR_RESET "\n"); for (unsigned j = 0; j < 4; j++) ac_dump_reg(f, gfx_level, family, R_008F00_SQ_BUF_RSRC_WORD0 + j * 4, desc[j], 0xffffffff); } static void radv_dump_image_descriptor(enum amd_gfx_level gfx_level, enum radeon_family family, const uint32_t *desc, FILE *f) { unsigned sq_img_rsrc_word0 = gfx_level >= GFX10 ? R_00A000_SQ_IMG_RSRC_WORD0 : R_008F10_SQ_IMG_RSRC_WORD0; fprintf(f, COLOR_CYAN "Image:" COLOR_RESET "\n"); for (unsigned j = 0; j < 8; j++) ac_dump_reg(f, gfx_level, family, sq_img_rsrc_word0 + j * 4, desc[j], 0xffffffff); fprintf(f, COLOR_CYAN " FMASK:" COLOR_RESET "\n"); for (unsigned j = 0; j < 8; j++) ac_dump_reg(f, gfx_level, family, sq_img_rsrc_word0 + j * 4, desc[8 + j], 0xffffffff); } static void radv_dump_sampler_descriptor(enum amd_gfx_level gfx_level, enum radeon_family family, const uint32_t *desc, FILE *f) { fprintf(f, COLOR_CYAN "Sampler state:" COLOR_RESET "\n"); for (unsigned j = 0; j < 4; j++) { ac_dump_reg(f, gfx_level, family, R_008F30_SQ_IMG_SAMP_WORD0 + j * 4, desc[j], 0xffffffff); } } static void radv_dump_combined_image_sampler_descriptor(enum amd_gfx_level gfx_level, enum radeon_family family, const uint32_t *desc, FILE *f) { radv_dump_image_descriptor(gfx_level, family, desc, f); radv_dump_sampler_descriptor(gfx_level, family, desc + 16, f); } static void radv_dump_descriptor_set(const struct radv_device *device, const struct radv_descriptor_set *set, unsigned id, FILE *f) { const struct radv_physical_device *pdev = radv_device_physical(device); enum amd_gfx_level gfx_level = pdev->info.gfx_level; enum radeon_family family = pdev->info.family; const struct radv_descriptor_set_layout *layout; int i; if (!set) return; layout = set->header.layout; for (i = 0; i < set->header.layout->binding_count; i++) { uint32_t *desc = set->header.mapped_ptr + layout->binding[i].offset / 4; fprintf(f, "(set=%u binding=%u offset=0x%x) ", id, i, layout->binding[i].offset); switch (layout->binding[i].type) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: radv_dump_buffer_descriptor(gfx_level, family, desc, f); break; case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: radv_dump_image_descriptor(gfx_level, family, desc, f); break; case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: radv_dump_combined_image_sampler_descriptor(gfx_level, family, desc, f); break; case VK_DESCRIPTOR_TYPE_SAMPLER: radv_dump_sampler_descriptor(gfx_level, family, desc, f); break; case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_MUTABLE_EXT: case VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR: /* todo */ break; default: assert(!"unknown descriptor type"); break; } fprintf(f, "\n"); } fprintf(f, "\n\n"); } static void radv_dump_descriptors(struct radv_device *device, FILE *f) { int i; fprintf(f, "Descriptors:\n"); for (i = 0; i < MAX_SETS; i++) { struct radv_descriptor_set *set = (struct radv_descriptor_set *)(uintptr_t)device->trace_data->descriptor_sets[i]; radv_dump_descriptor_set(device, set, i, f); } } struct radv_shader_inst { char text[160]; /* one disasm line */ unsigned offset; /* instruction offset */ unsigned size; /* instruction size >= 4 */ }; /* Split a disassembly string into lines and add them to the array pointed * to by "instructions". */ static void radv_add_split_disasm(const char *disasm, uint64_t start_addr, unsigned *num, struct radv_shader_inst *instructions) { struct radv_shader_inst *last_inst = *num ? &instructions[*num - 1] : NULL; char *next; char *repeat = strstr(disasm, "then repeated"); while ((next = strchr(disasm, '\n'))) { struct radv_shader_inst *inst = &instructions[*num]; unsigned len = next - disasm; if (repeat >= disasm && repeat < next) { uint32_t repeat_count; sscanf(repeat, "then repeated %u times", &repeat_count); for (uint32_t i = 0; i < repeat_count; i++) { inst = &instructions[*num]; memcpy(inst, last_inst, sizeof(struct radv_shader_inst)); inst->offset = last_inst->offset + last_inst->size * (i + 1); (*num)++; } last_inst = inst; disasm = next + 1; repeat = strstr(disasm, "then repeated"); continue; } if (!memchr(disasm, ';', len)) { /* Ignore everything that is not an instruction. */ disasm = next + 1; continue; } assert(len < ARRAY_SIZE(inst->text)); memcpy(inst->text, disasm, len); inst->text[len] = 0; inst->offset = last_inst ? last_inst->offset + last_inst->size : 0; const char *semicolon = strchr(disasm, ';'); assert(semicolon); /* 9 = 8 hex digits + a leading space */ inst->size = (next - semicolon) / 9 * 4; snprintf(inst->text + len, ARRAY_SIZE(inst->text) - len, " [PC=0x%" PRIx64 ", off=%u, size=%u]", start_addr + inst->offset, inst->offset, inst->size); last_inst = inst; (*num)++; disasm = next + 1; } } static void radv_dump_annotated_shader(const struct radv_shader *shader, gl_shader_stage stage, struct ac_wave_info *waves, unsigned num_waves, FILE *f) { uint64_t start_addr, end_addr; unsigned i; if (!shader) return; start_addr = radv_shader_get_va(shader) & ((1ull << 48) - 1); end_addr = start_addr + shader->code_size; /* See if any wave executes the shader. */ for (i = 0; i < num_waves; i++) { if (start_addr <= waves[i].pc && waves[i].pc <= end_addr) break; } if (i == num_waves) return; /* the shader is not being executed */ /* Remember the first found wave. The waves are sorted according to PC. */ waves = &waves[i]; num_waves -= i; /* Get the list of instructions. * Buffer size / 4 is the upper bound of the instruction count. */ unsigned num_inst = 0; struct radv_shader_inst *instructions = calloc(shader->code_size / 4, sizeof(struct radv_shader_inst)); radv_add_split_disasm(shader->disasm_string, start_addr, &num_inst, instructions); fprintf(f, COLOR_YELLOW "%s - annotated disassembly:" COLOR_RESET "\n", radv_get_shader_name(&shader->info, stage)); /* Print instructions with annotations. */ for (i = 0; i < num_inst; i++) { struct radv_shader_inst *inst = &instructions[i]; fprintf(f, "%s\n", inst->text); /* Print which waves execute the instruction right now. */ while (num_waves && start_addr + inst->offset == waves->pc) { fprintf(f, " " COLOR_GREEN "^ SE%u SH%u CU%u " "SIMD%u WAVE%u EXEC=%016" PRIx64 " ", waves->se, waves->sh, waves->cu, waves->simd, waves->wave, waves->exec); if (inst->size == 4) { fprintf(f, "INST32=%08X" COLOR_RESET "\n", waves->inst_dw0); } else { fprintf(f, "INST64=%08X %08X" COLOR_RESET "\n", waves->inst_dw0, waves->inst_dw1); } waves->matched = true; waves = &waves[1]; num_waves--; } } fprintf(f, "\n\n"); free(instructions); } static void radv_dump_spirv(const struct radv_shader *shader, const char *sha1, const char *dump_dir) { char dump_path[512]; FILE *f; snprintf(dump_path, sizeof(dump_path), "%s/%s.spv", dump_dir, sha1); f = fopen(dump_path, "w+"); if (f) { fwrite(shader->spirv, shader->spirv_size, 1, f); fclose(f); } } static void radv_dump_shader(struct radv_device *device, struct radv_pipeline *pipeline, struct radv_shader *shader, gl_shader_stage stage, const char *dump_dir, FILE *f) { const struct radv_physical_device *pdev = radv_device_physical(device); if (!shader) return; fprintf(f, "%s:\n\n", radv_get_shader_name(&shader->info, stage)); if (shader->spirv) { unsigned char sha1[21]; char sha1buf[41]; _mesa_sha1_compute(shader->spirv, shader->spirv_size, sha1); _mesa_sha1_format(sha1buf, sha1); if (device->vk.enabled_features.deviceFaultVendorBinary) { spirv_print_asm(f, (const uint32_t *)shader->spirv, shader->spirv_size / 4); } else { fprintf(f, "SPIRV (see %s.spv)\n\n", sha1buf); radv_dump_spirv(shader, sha1buf, dump_dir); } } if (shader->nir_string) { fprintf(f, "NIR:\n%s\n", shader->nir_string); } fprintf(f, "%s IR:\n%s\n", pdev->use_llvm ? "LLVM" : "ACO", shader->ir_string); fprintf(f, "DISASM:\n%s\n", shader->disasm_string); radv_dump_shader_stats(device, pipeline, shader, stage, f); } static void radv_dump_vertex_descriptors(const struct radv_device *device, const struct radv_graphics_pipeline *pipeline, FILE *f) { struct radv_shader *vs = radv_get_shader(pipeline->base.shaders, MESA_SHADER_VERTEX); uint32_t count = util_bitcount(vs->info.vs.vb_desc_usage_mask); uint32_t *vb_ptr = (uint32_t *)(uintptr_t)device->trace_data->vertex_descriptors; if (!count) return; fprintf(f, "Num vertex %s: %d\n", vs->info.vs.use_per_attribute_vb_descs ? "attributes" : "bindings", count); for (uint32_t i = 0; i < count; i++) { uint32_t *desc = &((uint32_t *)vb_ptr)[i * 4]; uint64_t va = 0; va |= desc[0]; va |= (uint64_t)G_008F04_BASE_ADDRESS_HI(desc[1]) << 32; fprintf(f, "VBO#%d:\n", i); fprintf(f, "\tVA: 0x%" PRIx64 "\n", va); fprintf(f, "\tStride: %d\n", G_008F04_STRIDE(desc[1])); fprintf(f, "\tNum records: %d (0x%x)\n", desc[2], desc[2]); } } static void radv_dump_vs_prolog(const struct radv_device *device, const struct radv_graphics_pipeline *pipeline, FILE *f) { struct radv_shader_part *vs_prolog = (struct radv_shader_part *)(uintptr_t)device->trace_data->vertex_prolog; struct radv_shader *vs_shader = radv_get_shader(pipeline->base.shaders, MESA_SHADER_VERTEX); if (!vs_prolog || !vs_shader || !vs_shader->info.vs.has_prolog) return; fprintf(f, "Vertex prolog:\n\n"); fprintf(f, "DISASM:\n%s\n", vs_prolog->disasm_string); } static struct radv_pipeline * radv_get_saved_pipeline(struct radv_device *device, enum amd_ip_type ring) { if (ring == AMD_IP_GFX) return (struct radv_pipeline *)(uintptr_t)device->trace_data->gfx_ring_pipeline; else return (struct radv_pipeline *)(uintptr_t)device->trace_data->comp_ring_pipeline; } static void radv_dump_queue_state(struct radv_queue *queue, const char *dump_dir, const char *wave_dump, FILE *f) { struct radv_device *device = radv_queue_device(queue); const struct radv_physical_device *pdev = radv_device_physical(device); enum amd_ip_type ring = radv_queue_ring(queue); struct radv_pipeline *pipeline; fprintf(f, "AMD_IP_%s:\n", ac_get_ip_type_string(&pdev->info, ring)); pipeline = radv_get_saved_pipeline(device, ring); if (pipeline) { fprintf(f, "Pipeline hash: %" PRIx64 "\n", pipeline->pipeline_hash); if (pipeline->type == RADV_PIPELINE_GRAPHICS) { struct radv_graphics_pipeline *graphics_pipeline = radv_pipeline_to_graphics(pipeline); radv_dump_vs_prolog(device, graphics_pipeline, f); /* Dump active graphics shaders. */ unsigned stages = graphics_pipeline->active_stages; while (stages) { int stage = u_bit_scan(&stages); radv_dump_shader(device, &graphics_pipeline->base, graphics_pipeline->base.shaders[stage], stage, dump_dir, f); } } else if (pipeline->type == RADV_PIPELINE_RAY_TRACING) { struct radv_ray_tracing_pipeline *rt_pipeline = radv_pipeline_to_ray_tracing(pipeline); for (unsigned i = 0; i < rt_pipeline->stage_count; i++) { struct radv_shader *shader = rt_pipeline->stages[i].shader; if (shader) radv_dump_shader(device, pipeline, shader, shader->info.stage, dump_dir, f); } radv_dump_shader(device, pipeline, pipeline->shaders[MESA_SHADER_INTERSECTION], MESA_SHADER_INTERSECTION, dump_dir, f); } else { struct radv_compute_pipeline *compute_pipeline = radv_pipeline_to_compute(pipeline); radv_dump_shader(device, &compute_pipeline->base, compute_pipeline->base.shaders[MESA_SHADER_COMPUTE], MESA_SHADER_COMPUTE, dump_dir, f); } if (wave_dump) { struct ac_wave_info waves[AC_MAX_WAVES_PER_CHIP]; enum amd_gfx_level gfx_level = pdev->info.gfx_level; unsigned num_waves = ac_get_wave_info(gfx_level, &pdev->info, wave_dump, waves); fprintf(f, COLOR_CYAN "The number of active waves = %u" COLOR_RESET "\n\n", num_waves); if (pipeline->type == RADV_PIPELINE_GRAPHICS) { struct radv_graphics_pipeline *graphics_pipeline = radv_pipeline_to_graphics(pipeline); /* Dump annotated active graphics shaders. */ unsigned stages = graphics_pipeline->active_stages; while (stages) { int stage = u_bit_scan(&stages); radv_dump_annotated_shader(graphics_pipeline->base.shaders[stage], stage, waves, num_waves, f); } } else if (pipeline->type == RADV_PIPELINE_RAY_TRACING) { struct radv_ray_tracing_pipeline *rt_pipeline = radv_pipeline_to_ray_tracing(pipeline); for (unsigned i = 0; i < rt_pipeline->stage_count; i++) { struct radv_shader *shader = rt_pipeline->stages[i].shader; if (shader) radv_dump_annotated_shader(shader, shader->info.stage, waves, num_waves, f); } radv_dump_annotated_shader(pipeline->shaders[MESA_SHADER_INTERSECTION], MESA_SHADER_INTERSECTION, waves, num_waves, f); } else { struct radv_compute_pipeline *compute_pipeline = radv_pipeline_to_compute(pipeline); radv_dump_annotated_shader(compute_pipeline->base.shaders[MESA_SHADER_COMPUTE], MESA_SHADER_COMPUTE, waves, num_waves, f); } /* Print waves executing shaders that are not currently bound. */ unsigned i; bool found = false; for (i = 0; i < num_waves; i++) { if (waves[i].matched) continue; if (!found) { fprintf(f, COLOR_CYAN "Waves not executing currently-bound shaders:" COLOR_RESET "\n"); found = true; } struct radv_shader *shader = radv_find_shader(device, waves[0].pc); if (shader) { radv_dump_annotated_shader(shader, shader->info.stage, waves, num_waves, f); if (waves[i].matched) continue; } fprintf(f, " SE%u SH%u CU%u SIMD%u WAVE%u EXEC=%016" PRIx64 " INST=%08X %08X PC=%" PRIx64 "\n", waves[i].se, waves[i].sh, waves[i].cu, waves[i].simd, waves[i].wave, waves[i].exec, waves[i].inst_dw0, waves[i].inst_dw1, waves[i].pc); } if (found) fprintf(f, "\n\n"); } VkDispatchIndirectCommand dispatch_indirect = device->trace_data->indirect_dispatch; if (dispatch_indirect.x || dispatch_indirect.y || dispatch_indirect.z) fprintf(f, "VkDispatchIndirectCommand: x=%u y=%u z=%u\n\n\n", dispatch_indirect.x, dispatch_indirect.y, dispatch_indirect.z); if (pipeline->type == RADV_PIPELINE_GRAPHICS) { struct radv_graphics_pipeline *graphics_pipeline = radv_pipeline_to_graphics(pipeline); radv_dump_vertex_descriptors(device, graphics_pipeline, f); } radv_dump_descriptors(device, f); } } static void radv_dump_cmd(const char *cmd, FILE *f) { #ifndef _WIN32 char line[2048]; FILE *p; p = popen(cmd, "r"); if (p) { while (fgets(line, sizeof(line), p)) fputs(line, f); fprintf(f, "\n"); pclose(p); } #endif } static void radv_dump_dmesg(FILE *f) { fprintf(f, "\nLast 60 lines of dmesg:\n\n"); radv_dump_cmd("dmesg | tail -n60", f); } void radv_dump_enabled_options(const struct radv_device *device, FILE *f) { const struct radv_physical_device *pdev = radv_device_physical(device); const struct radv_instance *instance = radv_physical_device_instance(pdev); uint64_t mask; if (instance->debug_flags) { fprintf(f, "Enabled debug options: "); mask = instance->debug_flags; while (mask) { int i = u_bit_scan64(&mask); fprintf(f, "%s, ", radv_get_debug_option_name(i)); } fprintf(f, "\n"); } if (instance->perftest_flags) { fprintf(f, "Enabled perftest options: "); mask = instance->perftest_flags; while (mask) { int i = u_bit_scan64(&mask); fprintf(f, "%s, ", radv_get_perftest_option_name(i)); } fprintf(f, "\n"); } } static void radv_dump_app_info(const struct radv_device *device, FILE *f) { const struct radv_physical_device *pdev = radv_device_physical(device); const struct radv_instance *instance = radv_physical_device_instance(pdev); fprintf(f, "Application name: %s\n", instance->vk.app_info.app_name); fprintf(f, "Application version: %d\n", instance->vk.app_info.app_version); fprintf(f, "Engine name: %s\n", instance->vk.app_info.engine_name); fprintf(f, "Engine version: %d\n", instance->vk.app_info.engine_version); fprintf(f, "API version: %d.%d.%d\n", VK_VERSION_MAJOR(instance->vk.app_info.api_version), VK_VERSION_MINOR(instance->vk.app_info.api_version), VK_VERSION_PATCH(instance->vk.app_info.api_version)); radv_dump_enabled_options(device, f); } static void radv_dump_device_name(const struct radv_device *device, FILE *f) { const struct radv_physical_device *pdev = radv_device_physical(device); const struct radeon_info *gpu_info = &pdev->info; #ifndef _WIN32 char kernel_version[128] = {0}; struct utsname uname_data; #endif #ifdef _WIN32 fprintf(f, "Device name: %s (DRM %i.%i.%i)\n\n", pdev->marketing_name, gpu_info->drm_major, gpu_info->drm_minor, gpu_info->drm_patchlevel); #else if (uname(&uname_data) == 0) snprintf(kernel_version, sizeof(kernel_version), " / %s", uname_data.release); fprintf(f, "Device name: %s (DRM %i.%i.%i%s)\n\n", pdev->marketing_name, gpu_info->drm_major, gpu_info->drm_minor, gpu_info->drm_patchlevel, kernel_version); #endif } static void radv_dump_umr_ring(const struct radv_queue *queue, FILE *f) { #ifndef _WIN32 const struct radv_device *device = radv_queue_device(queue); const struct radv_physical_device *pdev = radv_device_physical(device); const enum amd_ip_type ring = radv_queue_ring(queue); char cmd[256]; /* TODO: Dump compute ring. */ if (ring != AMD_IP_GFX) return; sprintf(cmd, "umr --by-pci %04x:%02x:%02x.%01x -RS %s 2>&1", pdev->bus_info.domain, pdev->bus_info.bus, pdev->bus_info.dev, pdev->bus_info.func, pdev->info.gfx_level >= GFX10 ? "gfx_0.0.0" : "gfx"); fprintf(f, "\nUMR GFX ring:\n\n"); radv_dump_cmd(cmd, f); #endif } static void radv_dump_umr_waves(struct radv_queue *queue, const char *wave_dump, FILE *f) { fprintf(f, "\nUMR GFX waves:\n\n%s", wave_dump ? wave_dump : ""); } static bool radv_gpu_hang_occurred(struct radv_queue *queue, enum amd_ip_type ring) { const struct radv_device *device = radv_queue_device(queue); struct radeon_winsys *ws = device->ws; if (!ws->ctx_wait_idle(queue->hw_ctx, ring, queue->vk.index_in_family)) return true; return false; } bool radv_vm_fault_occurred(struct radv_device *device, struct radv_winsys_gpuvm_fault_info *fault_info) { const struct radv_physical_device *pdev = radv_device_physical(device); if (!pdev->info.has_gpuvm_fault_query) return false; return device->ws->query_gpuvm_fault(device->ws, fault_info); } enum radv_device_fault_chunk { RADV_DEVICE_FAULT_CHUNK_TRACE, RADV_DEVICE_FAULT_CHUNK_QUEUE_STATE, RADV_DEVICE_FAULT_CHUNK_UMR_WAVES, RADV_DEVICE_FAULT_CHUNK_UMR_RING, RADV_DEVICE_FAULT_CHUNK_REGISTERS, RADV_DEVICE_FAULT_CHUNK_BO_RANGES, RADV_DEVICE_FAULT_CHUNK_BO_HISTORY, RADV_DEVICE_FAULT_CHUNK_VM_FAULT, RADV_DEVICE_FAULT_CHUNK_APP_INFO, RADV_DEVICE_FAULT_CHUNK_GPU_INFO, RADV_DEVICE_FAULT_CHUNK_DMESG, RADV_DEVICE_FAULT_CHUNK_COUNT, }; VkResult radv_check_gpu_hangs(struct radv_queue *queue, const struct radv_winsys_submit_info *submit_info) { enum amd_ip_type ring; ring = radv_queue_ring(queue); bool hang_occurred = radv_gpu_hang_occurred(queue, ring); if (!hang_occurred) return VK_SUCCESS; fprintf(stderr, "radv: GPU hang detected...\n"); #ifndef _WIN32 struct radv_device *device = radv_queue_device(queue); const struct radv_physical_device *pdev = radv_device_physical(device); const struct radv_instance *instance = radv_physical_device_instance(pdev); const bool save_hang_report = !device->vk.enabled_features.deviceFaultVendorBinary; struct radv_winsys_gpuvm_fault_info fault_info = {0}; /* Query if a VM fault happened for this GPU hang. */ bool vm_fault_occurred = radv_vm_fault_occurred(device, &fault_info); /* Create a directory into $HOME/radv_dumps__