/* * Copyright 2023 Valve Corporation * SPDX-License-Identifier: MIT */ #include "aco_ir.h" #include "util/bitscan.h" #include "util/macros.h" #include /* * This pass implements a simple forward list-scheduler which works on a small * partial DAG of 16 nodes at any time. Only ALU instructions are scheduled * entirely freely. Memory load instructions must be kept in-order and any other * instruction must not be re-scheduled at all. * * The main goal of this scheduler is to create more memory clauses, schedule * memory loads early, and to improve ALU instruction level parallelism. */ namespace aco { namespace { constexpr unsigned num_nodes = 16; using mask_t = uint16_t; static_assert(std::numeric_limits::digits >= num_nodes); struct VOPDInfo { VOPDInfo() : is_opy_only(0), is_dst_odd(0), src_banks(0), has_literal(0), is_commutative(0) {} uint16_t is_opy_only : 1; uint16_t is_dst_odd : 1; uint16_t src_banks : 10; /* 0-3: src0, 4-7: src1, 8-9: src2 */ uint16_t has_literal : 1; uint16_t is_commutative : 1; aco_opcode op = aco_opcode::num_opcodes; uint32_t literal = 0; }; struct InstrInfo { Instruction* instr; int32_t priority; mask_t dependency_mask; /* bitmask of nodes which have to be scheduled before this node. */ uint8_t next_non_reorderable; /* index of next non-reorderable instruction node after this one. */ bool potential_clause; /* indicates that this instruction is not (yet) immediately followed by a reorderable instruction. */ }; struct RegisterInfo { mask_t read_mask; /* bitmask of nodes which have to be scheduled before the next write. */ int8_t latency; /* estimated latency of last register write. */ uint8_t direct_dependency : 4; /* node that has to be scheduled before any other access. */ uint8_t has_direct_dependency : 1; /* whether there is an unscheduled direct dependency. */ uint8_t padding : 3; }; struct SchedILPContext { Program* program; bool is_vopd = false; InstrInfo nodes[num_nodes]; RegisterInfo regs[512]; mask_t non_reorder_mask = 0; /* bitmask of instruction nodes which should not be reordered. */ mask_t active_mask = 0; /* bitmask of valid instruction nodes. */ uint8_t next_non_reorderable = UINT8_MAX; /* index of next node which should not be reordered. */ uint8_t last_non_reorderable = UINT8_MAX; /* index of last node which should not be reordered. */ /* VOPD scheduler: */ VOPDInfo vopd[num_nodes]; VOPDInfo prev_vopd_info; InstrInfo prev_info; mask_t vopd_odd_mask = 0; mask_t vopd_even_mask = 0; }; /** * Returns true for side-effect free SALU and VALU instructions. */ bool can_reorder(const Instruction* const instr) { if (instr->isVALU()) return true; if (!instr->isSALU() || instr->isSOPP()) return false; switch (instr->opcode) { /* SOP2 */ case aco_opcode::s_cbranch_g_fork: case aco_opcode::s_rfe_restore_b64: /* SOP1 */ case aco_opcode::s_setpc_b64: case aco_opcode::s_swappc_b64: case aco_opcode::s_rfe_b64: case aco_opcode::s_cbranch_join: case aco_opcode::s_set_gpr_idx_idx: case aco_opcode::s_sendmsg_rtn_b32: case aco_opcode::s_sendmsg_rtn_b64: case aco_opcode::s_barrier_signal: case aco_opcode::s_barrier_signal_isfirst: case aco_opcode::s_get_barrier_state: case aco_opcode::s_barrier_init: case aco_opcode::s_barrier_join: case aco_opcode::s_wakeup_barrier: /* SOPK */ case aco_opcode::s_cbranch_i_fork: case aco_opcode::s_getreg_b32: case aco_opcode::s_setreg_b32: case aco_opcode::s_setreg_imm32_b32: case aco_opcode::s_call_b64: case aco_opcode::s_waitcnt_vscnt: case aco_opcode::s_waitcnt_vmcnt: case aco_opcode::s_waitcnt_expcnt: case aco_opcode::s_waitcnt_lgkmcnt: case aco_opcode::s_subvector_loop_begin: case aco_opcode::s_subvector_loop_end: /* SOPC */ case aco_opcode::s_setvskip: case aco_opcode::s_set_gpr_idx_on: return false; default: break; } return true; } VOPDInfo get_vopd_info(const SchedILPContext& ctx, const Instruction* instr) { if (instr->format != Format::VOP1 && instr->format != Format::VOP2) return VOPDInfo(); VOPDInfo info; info.is_commutative = true; switch (instr->opcode) { case aco_opcode::v_fmac_f32: info.op = aco_opcode::v_dual_fmac_f32; break; case aco_opcode::v_fmaak_f32: info.op = aco_opcode::v_dual_fmaak_f32; break; case aco_opcode::v_fmamk_f32: info.op = aco_opcode::v_dual_fmamk_f32; info.is_commutative = false; break; case aco_opcode::v_mul_f32: info.op = aco_opcode::v_dual_mul_f32; break; case aco_opcode::v_add_f32: info.op = aco_opcode::v_dual_add_f32; break; case aco_opcode::v_sub_f32: info.op = aco_opcode::v_dual_sub_f32; break; case aco_opcode::v_subrev_f32: info.op = aco_opcode::v_dual_subrev_f32; break; case aco_opcode::v_mul_legacy_f32: info.op = aco_opcode::v_dual_mul_dx9_zero_f32; break; case aco_opcode::v_mov_b32: info.op = aco_opcode::v_dual_mov_b32; break; case aco_opcode::v_bfrev_b32: if (!instr->operands[0].isConstant()) return VOPDInfo(); info.op = aco_opcode::v_dual_mov_b32; break; case aco_opcode::v_cndmask_b32: info.op = aco_opcode::v_dual_cndmask_b32; info.is_commutative = false; break; case aco_opcode::v_max_f32: info.op = aco_opcode::v_dual_max_f32; break; case aco_opcode::v_min_f32: info.op = aco_opcode::v_dual_min_f32; break; case aco_opcode::v_dot2c_f32_f16: info.op = aco_opcode::v_dual_dot2acc_f32_f16; break; case aco_opcode::v_add_u32: info.op = aco_opcode::v_dual_add_nc_u32; info.is_opy_only = true; break; case aco_opcode::v_lshlrev_b32: info.op = aco_opcode::v_dual_lshlrev_b32; info.is_opy_only = true; info.is_commutative = false; break; case aco_opcode::v_and_b32: info.op = aco_opcode::v_dual_and_b32; info.is_opy_only = true; break; default: return VOPDInfo(); } /* Each instruction may use at most one SGPR. */ if (instr->opcode == aco_opcode::v_cndmask_b32 && instr->operands[0].isOfType(RegType::sgpr)) return VOPDInfo(); info.is_dst_odd = instr->definitions[0].physReg().reg() & 0x1; static const unsigned bank_mask[3] = {0x3, 0x3, 0x1}; bool has_sgpr = false; for (unsigned i = 0; i < instr->operands.size(); i++) { Operand op = instr->operands[i]; if (instr->opcode == aco_opcode::v_bfrev_b32) op = Operand::get_const(ctx.program->gfx_level, util_bitreverse(op.constantValue()), 4); unsigned port = (instr->opcode == aco_opcode::v_fmamk_f32 && i == 1) ? 2 : i; if (op.isOfType(RegType::vgpr)) info.src_banks |= 1 << (port * 4 + (op.physReg().reg() & bank_mask[port])); /* Check all operands because of fmaak/fmamk. */ if (op.isLiteral()) { assert(!info.has_literal || info.literal == op.constantValue()); info.has_literal = true; info.literal = op.constantValue(); } /* Check all operands because of cndmask. */ has_sgpr |= !op.isConstant() && op.isOfType(RegType::sgpr); } /* An instruction can't use both a literal and an SGPR. */ if (has_sgpr && info.has_literal) return VOPDInfo(); info.is_commutative &= instr->operands[0].isOfType(RegType::vgpr); return info; } bool is_vopd_compatible(const VOPDInfo& a, const VOPDInfo& b) { if ((a.is_opy_only && b.is_opy_only) || (a.is_dst_odd == b.is_dst_odd)) return false; /* Both can use a literal, but it must be the same literal. */ if (a.has_literal && b.has_literal && a.literal != b.literal) return false; /* The rest is checking src VGPR bank compatibility. */ if ((a.src_banks & b.src_banks) == 0) return true; if (!a.is_commutative && !b.is_commutative) return false; uint16_t src0 = a.src_banks & 0xf; uint16_t src1 = a.src_banks & 0xf0; uint16_t src2 = a.src_banks & 0x300; uint16_t a_src_banks = (src0 << 4) | (src1 >> 4) | src2; if ((a_src_banks & b.src_banks) != 0) return false; /* If we have to turn v_mov_b32 into v_add_u32 but there is already an OPY-only instruction, * we can't do it. */ if (a.op == aco_opcode::v_dual_mov_b32 && !b.is_commutative && b.is_opy_only) return false; if (b.op == aco_opcode::v_dual_mov_b32 && !a.is_commutative && a.is_opy_only) return false; return true; } bool can_use_vopd(const SchedILPContext& ctx, unsigned idx) { VOPDInfo cur_vopd = ctx.vopd[idx]; Instruction* first = ctx.nodes[idx].instr; Instruction* second = ctx.prev_info.instr; if (!second) return false; if (ctx.prev_vopd_info.op == aco_opcode::num_opcodes || cur_vopd.op == aco_opcode::num_opcodes) return false; if (!is_vopd_compatible(ctx.prev_vopd_info, cur_vopd)) return false; assert(first->definitions.size() == 1); assert(first->definitions[0].size() == 1); assert(second->definitions.size() == 1); assert(second->definitions[0].size() == 1); /* Check for WaW dependency. */ if (first->definitions[0].physReg() == second->definitions[0].physReg()) return false; /* Check for RaW dependency. */ for (Operand op : second->operands) { assert(op.size() == 1); if (first->definitions[0].physReg() == op.physReg()) return false; } /* WaR dependencies are not a concern. */ return true; } unsigned get_latency(const Instruction* const instr) { /* Note, that these are not accurate latency estimations. */ if (instr->isVALU()) return 5; if (instr->isSALU()) return 2; if (instr->isVMEM() || instr->isFlatLike()) return 32; if (instr->isSMEM()) return 5; if (instr->accessesLDS()) return 2; return 0; } bool is_memory_instr(const Instruction* const instr) { /* For memory instructions, we allow to reorder them with ALU if it helps * to form larger clauses or to increase def-use distances. */ return instr->isVMEM() || instr->isFlatLike() || instr->isSMEM() || instr->accessesLDS() || instr->isEXP(); } constexpr unsigned max_sgpr = 128; constexpr unsigned min_vgpr = 256; void add_entry(SchedILPContext& ctx, Instruction* const instr, const uint32_t idx) { InstrInfo& entry = ctx.nodes[idx]; entry.instr = instr; entry.priority = 0; const mask_t mask = BITFIELD_BIT(idx); bool reorder = can_reorder(instr); ctx.active_mask |= mask; if (ctx.is_vopd) { VOPDInfo vopd = get_vopd_info(ctx, entry.instr); ctx.vopd[idx] = vopd; ctx.vopd_odd_mask &= ~mask; ctx.vopd_odd_mask |= vopd.is_dst_odd ? mask : 0; ctx.vopd_even_mask &= ~mask; ctx.vopd_even_mask |= vopd.is_dst_odd || vopd.op == aco_opcode::num_opcodes ? 0 : mask; } for (const Operand& op : instr->operands) { assert(op.isFixed()); unsigned reg = op.physReg(); if (reg >= max_sgpr && reg != scc && reg < min_vgpr) { reorder &= reg != pops_exiting_wave_id; continue; } for (unsigned i = 0; i < op.size(); i++) { RegisterInfo& reg_info = ctx.regs[reg + i]; /* Add register reads. */ reg_info.read_mask |= mask; int cycles_since_reg_write = num_nodes; if (reg_info.has_direct_dependency) { /* A previous dependency is still part of the DAG. */ entry.dependency_mask |= BITFIELD_BIT(reg_info.direct_dependency); cycles_since_reg_write = ctx.nodes[reg_info.direct_dependency].priority; } if (reg_info.latency) { /* Ignore and reset register latencies for memory loads and other non-reorderable * instructions. We schedule these as early as possible anyways. */ if (reorder && reg_info.latency > cycles_since_reg_write) { entry.priority = MIN2(entry.priority, cycles_since_reg_write - reg_info.latency); /* If a previous register write created some latency, ensure that this * is the first read of the register by making this instruction a direct * dependency of all following register reads. */ reg_info.has_direct_dependency = 1; reg_info.direct_dependency = idx; } reg_info.latency = 0; } } } /* Check if this instructions reads implicit registers. */ if (needs_exec_mask(instr)) { for (unsigned reg = exec_lo; reg <= exec_hi; reg++) { if (ctx.regs[reg].has_direct_dependency) entry.dependency_mask |= BITFIELD_BIT(ctx.regs[reg].direct_dependency); ctx.regs[reg].read_mask |= mask; } } if (ctx.program->gfx_level < GFX10 && instr->isScratch()) { for (unsigned reg = flat_scr_lo; reg <= flat_scr_hi; reg++) { if (ctx.regs[reg].has_direct_dependency) entry.dependency_mask |= BITFIELD_BIT(ctx.regs[reg].direct_dependency); ctx.regs[reg].read_mask |= mask; } } for (const Definition& def : instr->definitions) { for (unsigned i = 0; i < def.size(); i++) { RegisterInfo& reg_info = ctx.regs[def.physReg().reg() + i]; /* Add all previous register reads and writes to the dependencies. */ entry.dependency_mask |= reg_info.read_mask; reg_info.read_mask = mask; /* This register write is a direct dependency for all following reads. */ reg_info.has_direct_dependency = 1; reg_info.direct_dependency = idx; if (!ctx.is_vopd) { /* Add latency information for the next register read. */ reg_info.latency = get_latency(instr); } } } if (!reorder) { ctx.non_reorder_mask |= mask; /* Set this node as last non-reorderable instruction */ if (ctx.next_non_reorderable == UINT8_MAX) { ctx.next_non_reorderable = idx; } else { ctx.nodes[ctx.last_non_reorderable].next_non_reorderable = idx; } ctx.last_non_reorderable = idx; entry.next_non_reorderable = UINT8_MAX; /* Just don't reorder these at all. */ if (!is_memory_instr(instr) || instr->definitions.empty() || get_sync_info(instr).semantics & semantic_volatile || ctx.is_vopd) { /* Add all previous instructions as dependencies. */ entry.dependency_mask = ctx.active_mask; } /* Remove non-reorderable instructions from dependencies, since WaR dependencies can interfere * with clause formation. This should be fine, since these are always scheduled in-order and * any cases that are actually a concern for clause formation are added as transitive * dependencies. */ entry.dependency_mask &= ~ctx.non_reorder_mask; entry.potential_clause = true; } else if (ctx.last_non_reorderable != UINT8_MAX) { ctx.nodes[ctx.last_non_reorderable].potential_clause = false; } entry.dependency_mask &= ~mask; for (unsigned i = 0; i < num_nodes; i++) { if (!ctx.nodes[i].instr || i == idx) continue; /* Add transitive dependencies. */ if (entry.dependency_mask & BITFIELD_BIT(i)) entry.dependency_mask |= ctx.nodes[i].dependency_mask; /* increment base priority */ ctx.nodes[i].priority++; } } void remove_entry(SchedILPContext& ctx, const Instruction* const instr, const uint32_t idx) { const mask_t mask = ~BITFIELD_BIT(idx); ctx.active_mask &= mask; for (const Operand& op : instr->operands) { const unsigned reg = op.physReg(); if (reg >= max_sgpr && reg != scc && reg < min_vgpr) continue; for (unsigned i = 0; i < op.size(); i++) { RegisterInfo& reg_info = ctx.regs[reg + i]; reg_info.read_mask &= mask; reg_info.has_direct_dependency &= reg_info.direct_dependency != idx; } } if (needs_exec_mask(instr)) { ctx.regs[exec_lo].read_mask &= mask; ctx.regs[exec_hi].read_mask &= mask; } if (ctx.program->gfx_level < GFX10 && instr->isScratch()) { ctx.regs[flat_scr_lo].read_mask &= mask; ctx.regs[flat_scr_hi].read_mask &= mask; } for (const Definition& def : instr->definitions) { for (unsigned i = 0; i < def.size(); i++) { unsigned reg = def.physReg().reg() + i; ctx.regs[reg].read_mask &= mask; ctx.regs[reg].has_direct_dependency &= ctx.regs[reg].direct_dependency != idx; } } for (unsigned i = 0; i < num_nodes; i++) ctx.nodes[i].dependency_mask &= mask; if (ctx.next_non_reorderable == idx) { ctx.non_reorder_mask &= mask; ctx.next_non_reorderable = ctx.nodes[idx].next_non_reorderable; if (ctx.last_non_reorderable == idx) ctx.last_non_reorderable = UINT8_MAX; } } /** * Returns a bitfield of nodes which have to be scheduled before the * next non-reorderable instruction. * If the next non-reorderable instruction can form a clause, returns the * dependencies of the entire clause. */ mask_t collect_clause_dependencies(const SchedILPContext& ctx, const uint8_t next, mask_t clause_mask) { const InstrInfo& entry = ctx.nodes[next]; mask_t dependencies = entry.dependency_mask; clause_mask |= (entry.potential_clause << next); if (!is_memory_instr(entry.instr)) return dependencies; /* If this is potentially an "open" clause, meaning that the clause might * consist of instruction not yet added to the DAG, consider all previous * instructions as dependencies. This prevents splitting of larger, already * formed clauses. */ if (next == ctx.last_non_reorderable && entry.potential_clause) return (~clause_mask & ctx.active_mask) | dependencies; if (entry.next_non_reorderable == UINT8_MAX) return dependencies; /* Check if this can form a clause with the following non-reorderable instruction */ if (should_form_clause(entry.instr, ctx.nodes[entry.next_non_reorderable].instr)) { mask_t clause_deps = collect_clause_dependencies(ctx, entry.next_non_reorderable, clause_mask); /* if the following clause is independent from us, add their dependencies */ if (!(clause_deps & BITFIELD_BIT(next))) dependencies |= clause_deps; } return dependencies; } /** * Returns the index of the next instruction to be selected. */ unsigned select_instruction_ilp(const SchedILPContext& ctx) { mask_t mask = ctx.active_mask; /* First, collect all dependencies of the next non-reorderable instruction(s). * These make up the list of possible candidates. */ if (ctx.next_non_reorderable != UINT8_MAX) mask = collect_clause_dependencies(ctx, ctx.next_non_reorderable, 0); /* If the next non-reorderable instruction has no dependencies, select it */ if (mask == 0) return ctx.next_non_reorderable; /* Otherwise, select the instruction with highest priority of all candidates. */ unsigned idx = -1u; int32_t priority = INT32_MIN; u_foreach_bit (i, mask) { const InstrInfo& candidate = ctx.nodes[i]; /* Check if the candidate has pending dependencies. */ if (candidate.dependency_mask) continue; if (idx == -1u || candidate.priority > priority) { idx = i; priority = candidate.priority; } } assert(idx != -1u); return idx; } bool compare_nodes_vopd(const SchedILPContext& ctx, int num_vopd_odd_minus_even, bool* use_vopd, unsigned current, unsigned candidate) { if (can_use_vopd(ctx, candidate)) { /* If we can form a VOPD instruction, always prefer to do so. */ if (!*use_vopd) { *use_vopd = true; return true; } } else { if (*use_vopd) return false; /* Neither current nor candidate can form a VOPD instruction with the previously scheduled * instruction. */ VOPDInfo current_vopd = ctx.vopd[current]; VOPDInfo candidate_vopd = ctx.vopd[candidate]; /* Delay scheduling VOPD-capable instructions in case an opportunity appears later. */ bool current_vopd_capable = current_vopd.op != aco_opcode::num_opcodes; bool candidate_vopd_capable = candidate_vopd.op != aco_opcode::num_opcodes; if (current_vopd_capable != candidate_vopd_capable) return !candidate_vopd_capable; /* If we have to select from VOPD-capable instructions, prefer maintaining a balance of * odd/even instructions, in case selecting this instruction fails to make a pair. */ if (current_vopd_capable && num_vopd_odd_minus_even != 0) { assert(candidate_vopd_capable); bool prefer_vopd_dst_odd = num_vopd_odd_minus_even > 0; if (current_vopd.is_dst_odd != candidate_vopd.is_dst_odd) return prefer_vopd_dst_odd ? candidate_vopd.is_dst_odd : !candidate_vopd.is_dst_odd; } } return ctx.nodes[candidate].priority > ctx.nodes[current].priority; } unsigned select_instruction_vopd(const SchedILPContext& ctx, bool* use_vopd) { *use_vopd = false; mask_t mask = ctx.active_mask; if (ctx.next_non_reorderable != UINT8_MAX) mask = ctx.nodes[ctx.next_non_reorderable].dependency_mask; if (mask == 0) return ctx.next_non_reorderable; int num_vopd_odd_minus_even = (int)util_bitcount(ctx.vopd_odd_mask & mask) - (int)util_bitcount(ctx.vopd_even_mask & mask); unsigned cur = -1u; u_foreach_bit (i, mask) { const InstrInfo& candidate = ctx.nodes[i]; /* Check if the candidate has pending dependencies. */ if (candidate.dependency_mask) continue; if (cur == -1u) { cur = i; *use_vopd = can_use_vopd(ctx, i); } else if (compare_nodes_vopd(ctx, num_vopd_odd_minus_even, use_vopd, cur, i)) { cur = i; } } assert(cur != -1u); return cur; } void get_vopd_opcode_operands(const SchedILPContext& ctx, Instruction* instr, const VOPDInfo& info, bool swap, aco_opcode* op, unsigned* num_operands, Operand* operands) { *op = info.op; *num_operands += instr->operands.size(); std::copy(instr->operands.begin(), instr->operands.end(), operands); if (instr->opcode == aco_opcode::v_bfrev_b32) { operands[0] = Operand::get_const(ctx.program->gfx_level, util_bitreverse(operands[0].constantValue()), 4); } if (swap && info.op == aco_opcode::v_dual_mov_b32) { *op = aco_opcode::v_dual_add_nc_u32; (*num_operands)++; operands[1] = operands[0]; operands[0] = Operand::zero(); } else if (swap) { if (info.op == aco_opcode::v_dual_sub_f32) *op = aco_opcode::v_dual_subrev_f32; else if (info.op == aco_opcode::v_dual_subrev_f32) *op = aco_opcode::v_dual_sub_f32; std::swap(operands[0], operands[1]); } } Instruction* create_vopd_instruction(const SchedILPContext& ctx, unsigned idx) { Instruction* x = ctx.prev_info.instr; Instruction* y = ctx.nodes[idx].instr; VOPDInfo x_info = ctx.prev_vopd_info; VOPDInfo y_info = ctx.vopd[idx]; bool swap_x = false, swap_y = false; if (x_info.src_banks & y_info.src_banks) { assert(x_info.is_commutative || y_info.is_commutative); /* Avoid swapping v_mov_b32 because it will become an OPY-only opcode. */ if (x_info.op == aco_opcode::v_dual_mov_b32 && !y_info.is_commutative) { swap_x = true; x_info.is_opy_only = true; } else { swap_x = x_info.is_commutative && x_info.op != aco_opcode::v_dual_mov_b32; swap_y = y_info.is_commutative && !swap_x; } } if (x_info.is_opy_only) { std::swap(x, y); std::swap(x_info, y_info); std::swap(swap_x, swap_y); } aco_opcode x_op, y_op; unsigned num_operands = 0; Operand operands[6]; get_vopd_opcode_operands(ctx, x, x_info, swap_x, &x_op, &num_operands, operands); get_vopd_opcode_operands(ctx, y, y_info, swap_y, &y_op, &num_operands, operands + num_operands); Instruction* instr = create_instruction(x_op, Format::VOPD, num_operands, 2); instr->vopd().opy = y_op; instr->definitions[0] = x->definitions[0]; instr->definitions[1] = y->definitions[0]; std::copy(operands, operands + num_operands, instr->operands.begin()); return instr; } template void do_schedule(SchedILPContext& ctx, It& insert_it, It& remove_it, It instructions_begin, It instructions_end) { for (unsigned i = 0; i < num_nodes; i++) { if (remove_it == instructions_end) break; add_entry(ctx, (remove_it++)->get(), i); } ctx.prev_info.instr = NULL; bool use_vopd = false; while (ctx.active_mask) { unsigned next_idx = ctx.is_vopd ? select_instruction_vopd(ctx, &use_vopd) : select_instruction_ilp(ctx); Instruction* next_instr = ctx.nodes[next_idx].instr; if (use_vopd) { std::prev(insert_it)->reset(create_vopd_instruction(ctx, next_idx)); ctx.prev_info.instr = NULL; } else { (insert_it++)->reset(next_instr); ctx.prev_info = ctx.nodes[next_idx]; ctx.prev_vopd_info = ctx.vopd[next_idx]; } remove_entry(ctx, next_instr, next_idx); ctx.nodes[next_idx].instr = NULL; if (remove_it != instructions_end) { add_entry(ctx, (remove_it++)->get(), next_idx); } else if (ctx.last_non_reorderable != UINT8_MAX) { ctx.nodes[ctx.last_non_reorderable].potential_clause = false; ctx.last_non_reorderable = UINT8_MAX; } } } } // namespace void schedule_ilp(Program* program) { SchedILPContext ctx = {program}; for (Block& block : program->blocks) { auto it = block.instructions.begin(); auto insert_it = block.instructions.begin(); do_schedule(ctx, insert_it, it, block.instructions.begin(), block.instructions.end()); block.instructions.resize(insert_it - block.instructions.begin()); } } void schedule_vopd(Program* program) { if (program->gfx_level < GFX11 || program->wave_size != 32) return; SchedILPContext ctx = {program}; ctx.is_vopd = true; for (Block& block : program->blocks) { auto it = block.instructions.rbegin(); auto insert_it = block.instructions.rbegin(); do_schedule(ctx, insert_it, it, block.instructions.rbegin(), block.instructions.rend()); block.instructions.erase(block.instructions.begin(), insert_it.base()); } } } // namespace aco