/* * Copyright © 2018 Valve Corporation * * SPDX-License-Identifier: MIT */ #include "aco_builder.h" #include "aco_ir.h" #include "common/sid.h" #include "util/memstream.h" #include "ac_shader_util.h" #include #include #include namespace aco { struct constaddr_info { unsigned getpc_end; unsigned add_literal; }; struct asm_context { Program* program; enum amd_gfx_level gfx_level; std::vector> branches; std::map constaddrs; std::map resumeaddrs; std::vector* symbols; Block* loop_header = NULL; const int16_t* opcode; // TODO: keep track of branch instructions referring blocks // and, when emitting the block, correct the offset in instr asm_context(Program* program_, std::vector* symbols_) : program(program_), gfx_level(program->gfx_level), symbols(symbols_) { if (gfx_level <= GFX7) opcode = &instr_info.opcode_gfx7[0]; else if (gfx_level <= GFX9) opcode = &instr_info.opcode_gfx9[0]; else if (gfx_level <= GFX10_3) opcode = &instr_info.opcode_gfx10[0]; else if (gfx_level <= GFX11_5) opcode = &instr_info.opcode_gfx11[0]; else opcode = &instr_info.opcode_gfx12[0]; } int subvector_begin_pos = -1; }; unsigned get_mimg_nsa_dwords(const Instruction* instr) { unsigned addr_dwords = instr->operands.size() - 3; for (unsigned i = 1; i < addr_dwords; i++) { if (instr->operands[3 + i].physReg() != instr->operands[3 + (i - 1)].physReg().advance(instr->operands[3 + (i - 1)].bytes())) return DIV_ROUND_UP(addr_dwords - 1, 4); } return 0; } unsigned get_vopd_opy_start(const Instruction* instr) { switch (instr->opcode) { case aco_opcode::v_dual_fmac_f32: case aco_opcode::v_dual_fmaak_f32: case aco_opcode::v_dual_fmamk_f32: case aco_opcode::v_dual_cndmask_b32: case aco_opcode::v_dual_dot2acc_f32_f16: case aco_opcode::v_dual_dot2acc_f32_bf16: return 3; case aco_opcode::v_dual_mov_b32: return 1; default: return 2; } } uint32_t reg(asm_context& ctx, PhysReg reg) { if (ctx.gfx_level >= GFX11) { if (reg == m0) return sgpr_null.reg(); else if (reg == sgpr_null) return m0.reg(); } return reg.reg(); } ALWAYS_INLINE uint32_t reg(asm_context& ctx, Operand op, unsigned width = 32) { return reg(ctx, op.physReg()) & BITFIELD_MASK(width); } ALWAYS_INLINE uint32_t reg(asm_context& ctx, Definition def, unsigned width = 32) { return reg(ctx, def.physReg()) & BITFIELD_MASK(width); } bool needs_vop3_gfx11(asm_context& ctx, Instruction* instr) { if (ctx.gfx_level <= GFX10_3) return false; uint8_t mask = get_gfx11_true16_mask(instr->opcode); if (!mask) return false; u_foreach_bit (i, mask & 0x3) { if (instr->operands[i].physReg().reg() >= (256 + 128)) return true; } if ((mask & 0x8) && instr->definitions[0].physReg().reg() >= (256 + 128)) return true; return false; } template uint32_t get_gfx12_cpol(const T& instr) { uint32_t scope = instr.cache.gfx12.scope; uint32_t th = instr.cache.gfx12.temporal_hint; return scope | (th << 2); } void emit_sop2_instruction(asm_context& ctx, std::vector& out, Instruction* instr) { uint32_t opcode = ctx.opcode[(int)instr->opcode]; uint32_t encoding = (0b10 << 30); encoding |= opcode << 23; encoding |= !instr->definitions.empty() ? reg(ctx, instr->definitions[0]) << 16 : 0; encoding |= instr->operands.size() >= 2 ? reg(ctx, instr->operands[1]) << 8 : 0; encoding |= !instr->operands.empty() ? reg(ctx, instr->operands[0]) : 0; out.push_back(encoding); } void emit_sopk_instruction(asm_context& ctx, std::vector& out, Instruction* instr) { uint32_t opcode = ctx.opcode[(int)instr->opcode]; SALU_instruction& sopk = instr->salu(); assert(sopk.imm <= UINT16_MAX); if (instr->opcode == aco_opcode::s_subvector_loop_begin) { assert(ctx.gfx_level >= GFX10); assert(ctx.subvector_begin_pos == -1); ctx.subvector_begin_pos = out.size(); } else if (instr->opcode == aco_opcode::s_subvector_loop_end) { assert(ctx.gfx_level >= GFX10); assert(ctx.subvector_begin_pos != -1); /* Adjust s_subvector_loop_begin instruction to the address after the end */ out[ctx.subvector_begin_pos] |= (out.size() - ctx.subvector_begin_pos); /* Adjust s_subvector_loop_end instruction to the address after the beginning */ sopk.imm = (uint16_t)(ctx.subvector_begin_pos - (int)out.size()); ctx.subvector_begin_pos = -1; } uint32_t encoding = (0b1011 << 28); encoding |= opcode << 23; encoding |= !instr->definitions.empty() && !(instr->definitions[0].physReg() == scc) ? reg(ctx, instr->definitions[0]) << 16 : !instr->operands.empty() && instr->operands[0].physReg() <= 127 ? reg(ctx, instr->operands[0]) << 16 : 0; encoding |= sopk.imm; out.push_back(encoding); } void emit_sop1_instruction(asm_context& ctx, std::vector& out, Instruction* instr) { uint32_t opcode = ctx.opcode[(int)instr->opcode]; uint32_t encoding = (0b101111101 << 23); encoding |= !instr->definitions.empty() ? reg(ctx, instr->definitions[0]) << 16 : 0; encoding |= opcode << 8; encoding |= !instr->operands.empty() ? reg(ctx, instr->operands[0]) : 0; out.push_back(encoding); } void emit_sopc_instruction(asm_context& ctx, std::vector& out, Instruction* instr) { uint32_t opcode = ctx.opcode[(int)instr->opcode]; uint32_t encoding = (0b101111110 << 23); encoding |= opcode << 16; encoding |= instr->operands.size() == 2 ? reg(ctx, instr->operands[1]) << 8 : 0; encoding |= !instr->operands.empty() ? reg(ctx, instr->operands[0]) : 0; out.push_back(encoding); } void emit_sopp_instruction(asm_context& ctx, std::vector& out, Instruction* instr, bool force_imm = false) { uint32_t opcode = ctx.opcode[(int)instr->opcode]; SALU_instruction& sopp = instr->salu(); uint32_t encoding = (0b101111111 << 23); encoding |= opcode << 16; if (!force_imm && instr_info.classes[(int)instr->opcode] == instr_class::branch) { sopp.pass_flags = 0; ctx.branches.emplace_back(out.size(), &sopp); } else { assert(sopp.imm <= UINT16_MAX); encoding |= (uint16_t)sopp.imm; } out.push_back(encoding); } void emit_smem_instruction(asm_context& ctx, std::vector& out, Instruction* instr) { uint32_t opcode = ctx.opcode[(int)instr->opcode]; SMEM_instruction& smem = instr->smem(); bool glc = smem.cache.value & ac_glc; bool dlc = smem.cache.value & ac_dlc; bool soe = instr->operands.size() >= (!instr->definitions.empty() ? 3 : 4); bool is_load = !instr->definitions.empty(); uint32_t encoding = 0; if (ctx.gfx_level <= GFX7) { encoding = (0b11000 << 27); encoding |= opcode << 22; encoding |= instr->definitions.size() ? reg(ctx, instr->definitions[0]) << 15 : 0; encoding |= instr->operands.size() ? (reg(ctx, instr->operands[0]) >> 1) << 9 : 0; if (instr->operands.size() >= 2) { if (!instr->operands[1].isConstant()) { encoding |= reg(ctx, instr->operands[1]); } else if (instr->operands[1].constantValue() >= 1024) { encoding |= 255; /* SQ_SRC_LITERAL */ } else { encoding |= instr->operands[1].constantValue() >> 2; encoding |= 1 << 8; } } out.push_back(encoding); /* SMRD instructions can take a literal on GFX7 */ if (instr->operands.size() >= 2 && instr->operands[1].isConstant() && instr->operands[1].constantValue() >= 1024) out.push_back(instr->operands[1].constantValue() >> 2); return; } if (ctx.gfx_level <= GFX9) { encoding = (0b110000 << 26); assert(!dlc); /* Device-level coherent is not supported on GFX9 and lower */ /* We don't use the NV bit. */ } else { encoding = (0b111101 << 26); if (ctx.gfx_level <= GFX11_5) encoding |= dlc ? 1 << (ctx.gfx_level >= GFX11 ? 13 : 14) : 0; } if (ctx.gfx_level <= GFX11_5) { encoding |= opcode << 18; encoding |= glc ? 1 << (ctx.gfx_level >= GFX11 ? 14 : 16) : 0; } else { encoding |= opcode << 13; encoding |= get_gfx12_cpol(smem) << 21; } if (ctx.gfx_level <= GFX9) { if (instr->operands.size() >= 2) encoding |= instr->operands[1].isConstant() ? 1 << 17 : 0; /* IMM - immediate enable */ } if (ctx.gfx_level == GFX9) { encoding |= soe ? 1 << 14 : 0; } if (is_load || instr->operands.size() >= 3) { /* SDATA */ encoding |= (is_load ? reg(ctx, instr->definitions[0]) : reg(ctx, instr->operands[2])) << 6; } if (instr->operands.size() >= 1) { /* SBASE */ encoding |= reg(ctx, instr->operands[0]) >> 1; } out.push_back(encoding); encoding = 0; int32_t offset = 0; uint32_t soffset = ctx.gfx_level >= GFX10 ? reg(ctx, sgpr_null) /* On GFX10 this is disabled by specifying SGPR_NULL */ : 0; /* On GFX9, it is disabled by the SOE bit (and it's not present on GFX8 and below) */ if (instr->operands.size() >= 2) { const Operand& op_off1 = instr->operands[1]; if (ctx.gfx_level <= GFX9) { offset = op_off1.isConstant() ? op_off1.constantValue() : reg(ctx, op_off1); } else { /* GFX10 only supports constants in OFFSET, so put the operand in SOFFSET if it's an * SGPR */ if (op_off1.isConstant()) { offset = op_off1.constantValue(); } else { soffset = reg(ctx, op_off1); assert(!soe); /* There is no place to put the other SGPR offset, if any */ } } if (soe) { const Operand& op_off2 = instr->operands.back(); assert(ctx.gfx_level >= GFX9); /* GFX8 and below don't support specifying a constant and an SGPR at the same time */ assert(!op_off2.isConstant()); soffset = reg(ctx, op_off2); } } encoding |= offset; encoding |= soffset << 25; out.push_back(encoding); } void emit_vop2_instruction(asm_context& ctx, std::vector& out, Instruction* instr) { uint32_t opcode = ctx.opcode[(int)instr->opcode]; VALU_instruction& valu = instr->valu(); uint32_t encoding = 0; encoding |= opcode << 25; encoding |= reg(ctx, instr->definitions[0], 8) << 17; encoding |= (valu.opsel[3] ? 128 : 0) << 17; encoding |= reg(ctx, instr->operands[1], 8) << 9; encoding |= (valu.opsel[1] ? 128 : 0) << 9; encoding |= reg(ctx, instr->operands[0]); encoding |= valu.opsel[0] ? 128 : 0; out.push_back(encoding); } void emit_vop1_instruction(asm_context& ctx, std::vector& out, Instruction* instr) { uint32_t opcode = ctx.opcode[(int)instr->opcode]; VALU_instruction& valu = instr->valu(); uint32_t encoding = (0b0111111 << 25); if (!instr->definitions.empty()) { encoding |= reg(ctx, instr->definitions[0], 8) << 17; encoding |= (valu.opsel[3] ? 128 : 0) << 17; } encoding |= opcode << 9; if (!instr->operands.empty()) { encoding |= reg(ctx, instr->operands[0]); encoding |= valu.opsel[0] ? 128 : 0; } out.push_back(encoding); } void emit_vopc_instruction(asm_context& ctx, std::vector& out, Instruction* instr) { uint32_t opcode = ctx.opcode[(int)instr->opcode]; VALU_instruction& valu = instr->valu(); uint32_t encoding = (0b0111110 << 25); encoding |= opcode << 17; encoding |= reg(ctx, instr->operands[1], 8) << 9; encoding |= (valu.opsel[1] ? 128 : 0) << 9; encoding |= reg(ctx, instr->operands[0]); encoding |= valu.opsel[0] ? 128 : 0; out.push_back(encoding); } void emit_vintrp_instruction(asm_context& ctx, std::vector& out, Instruction* instr) { uint32_t opcode = ctx.opcode[(int)instr->opcode]; VINTRP_instruction& interp = instr->vintrp(); uint32_t encoding = 0; if (instr->opcode == aco_opcode::v_interp_p1ll_f16 || instr->opcode == aco_opcode::v_interp_p1lv_f16 || instr->opcode == aco_opcode::v_interp_p2_legacy_f16 || instr->opcode == aco_opcode::v_interp_p2_f16 || instr->opcode == aco_opcode::v_interp_p2_hi_f16) { if (ctx.gfx_level == GFX8 || ctx.gfx_level == GFX9) { encoding = (0b110100 << 26); } else if (ctx.gfx_level >= GFX10) { encoding = (0b110101 << 26); } else { unreachable("Unknown gfx_level."); } unsigned opsel = instr->opcode == aco_opcode::v_interp_p2_hi_f16 ? 0x8 : 0; encoding |= opcode << 16; encoding |= opsel << 11; encoding |= reg(ctx, instr->definitions[0], 8); out.push_back(encoding); encoding = 0; encoding |= interp.attribute; encoding |= interp.component << 6; encoding |= interp.high_16bits << 8; encoding |= reg(ctx, instr->operands[0]) << 9; if (instr->opcode == aco_opcode::v_interp_p2_f16 || instr->opcode == aco_opcode::v_interp_p2_hi_f16 || instr->opcode == aco_opcode::v_interp_p2_legacy_f16 || instr->opcode == aco_opcode::v_interp_p1lv_f16) { encoding |= reg(ctx, instr->operands[2]) << 18; } out.push_back(encoding); } else { if (ctx.gfx_level == GFX8 || ctx.gfx_level == GFX9) { encoding = (0b110101 << 26); /* Vega ISA doc says 110010 but it's wrong */ } else { encoding = (0b110010 << 26); } assert(encoding); encoding |= reg(ctx, instr->definitions[0], 8) << 18; encoding |= opcode << 16; encoding |= interp.attribute << 10; encoding |= interp.component << 8; if (instr->opcode == aco_opcode::v_interp_mov_f32) encoding |= (0x3 & instr->operands[0].constantValue()); else encoding |= reg(ctx, instr->operands[0], 8); out.push_back(encoding); } } void emit_vinterp_inreg_instruction(asm_context& ctx, std::vector& out, Instruction* instr) { uint32_t opcode = ctx.opcode[(int)instr->opcode]; VINTERP_inreg_instruction& interp = instr->vinterp_inreg(); uint32_t encoding = (0b11001101 << 24); encoding |= reg(ctx, instr->definitions[0], 8); encoding |= (uint32_t)interp.wait_exp << 8; encoding |= (uint32_t)interp.opsel << 11; encoding |= (uint32_t)interp.clamp << 15; encoding |= opcode << 16; out.push_back(encoding); encoding = 0; for (unsigned i = 0; i < instr->operands.size(); i++) encoding |= reg(ctx, instr->operands[i]) << (i * 9); for (unsigned i = 0; i < 3; i++) encoding |= interp.neg[i] << (29 + i); out.push_back(encoding); } void emit_vopd_instruction(asm_context& ctx, std::vector& out, Instruction* instr) { uint32_t opcode = ctx.opcode[(int)instr->opcode]; VOPD_instruction& vopd = instr->vopd(); uint32_t encoding = (0b110010 << 26); encoding |= reg(ctx, instr->operands[0]); if (instr->opcode != aco_opcode::v_dual_mov_b32) encoding |= reg(ctx, instr->operands[1], 8) << 9; encoding |= (uint32_t)ctx.opcode[(int)vopd.opy] << 17; encoding |= opcode << 22; out.push_back(encoding); unsigned opy_start = get_vopd_opy_start(instr); encoding = reg(ctx, instr->operands[opy_start]); if (vopd.opy != aco_opcode::v_dual_mov_b32) encoding |= reg(ctx, instr->operands[opy_start + 1], 8) << 9; encoding |= (reg(ctx, instr->definitions[1], 8) >> 1) << 17; encoding |= reg(ctx, instr->definitions[0], 8) << 24; out.push_back(encoding); } void emit_ds_instruction(asm_context& ctx, std::vector& out, Instruction* instr) { uint32_t opcode = ctx.opcode[(int)instr->opcode]; DS_instruction& ds = instr->ds(); uint32_t encoding = (0b110110 << 26); if (ctx.gfx_level == GFX8 || ctx.gfx_level == GFX9) { encoding |= opcode << 17; encoding |= (ds.gds ? 1 : 0) << 16; } else { encoding |= opcode << 18; encoding |= (ds.gds ? 1 : 0) << 17; } encoding |= ((0xFF & ds.offset1) << 8); encoding |= (0xFFFF & ds.offset0); out.push_back(encoding); encoding = 0; if (!instr->definitions.empty()) encoding |= reg(ctx, instr->definitions[0], 8) << 24; for (unsigned i = 0; i < MIN2(instr->operands.size(), 3); i++) { Operand& op = instr->operands[i]; if (op.physReg() != m0 && !op.isUndefined()) encoding |= reg(ctx, op, 8) << (8 * i); } out.push_back(encoding); } void emit_ldsdir_instruction(asm_context& ctx, std::vector& out, Instruction* instr) { uint32_t opcode = ctx.opcode[(int)instr->opcode]; LDSDIR_instruction& dir = instr->ldsdir(); uint32_t encoding = (0b11001110 << 24); encoding |= opcode << 20; encoding |= (uint32_t)dir.wait_vdst << 16; if (ctx.gfx_level >= GFX12) encoding |= (uint32_t)dir.wait_vsrc << 23; encoding |= (uint32_t)dir.attr << 10; encoding |= (uint32_t)dir.attr_chan << 8; encoding |= reg(ctx, instr->definitions[0], 8); out.push_back(encoding); } void emit_mubuf_instruction(asm_context& ctx, std::vector& out, Instruction* instr) { uint32_t opcode = ctx.opcode[(int)instr->opcode]; MUBUF_instruction& mubuf = instr->mubuf(); bool glc = mubuf.cache.value & ac_glc; bool slc = mubuf.cache.value & ac_slc; bool dlc = mubuf.cache.value & ac_dlc; uint32_t encoding = (0b111000 << 26); if (ctx.gfx_level >= GFX11 && mubuf.lds) /* GFX11 has separate opcodes for LDS loads */ opcode = opcode == 0 ? 0x32 : (opcode + 0x1d); else encoding |= (mubuf.lds ? 1 : 0) << 16; encoding |= opcode << 18; encoding |= (glc ? 1 : 0) << 14; if (ctx.gfx_level <= GFX10_3) encoding |= (mubuf.idxen ? 1 : 0) << 13; assert(!mubuf.addr64 || ctx.gfx_level <= GFX7); if (ctx.gfx_level == GFX6 || ctx.gfx_level == GFX7) encoding |= (mubuf.addr64 ? 1 : 0) << 15; if (ctx.gfx_level <= GFX10_3) encoding |= (mubuf.offen ? 1 : 0) << 12; if (ctx.gfx_level == GFX8 || ctx.gfx_level == GFX9) { assert(!dlc); /* Device-level coherent is not supported on GFX9 and lower */ encoding |= (slc ? 1 : 0) << 17; } else if (ctx.gfx_level >= GFX11) { encoding |= (slc ? 1 : 0) << 12; encoding |= (dlc ? 1 : 0) << 13; } else if (ctx.gfx_level >= GFX10) { encoding |= (dlc ? 1 : 0) << 15; } encoding |= 0x0FFF & mubuf.offset; out.push_back(encoding); encoding = 0; if (ctx.gfx_level <= GFX7 || (ctx.gfx_level >= GFX10 && ctx.gfx_level <= GFX10_3)) { encoding |= (slc ? 1 : 0) << 22; } encoding |= reg(ctx, instr->operands[2]) << 24; if (ctx.gfx_level >= GFX11) { encoding |= (mubuf.tfe ? 1 : 0) << 21; encoding |= (mubuf.offen ? 1 : 0) << 22; encoding |= (mubuf.idxen ? 1 : 0) << 23; } else { encoding |= (mubuf.tfe ? 1 : 0) << 23; } encoding |= (reg(ctx, instr->operands[0]) >> 2) << 16; if (instr->operands.size() > 3 && !mubuf.lds) encoding |= reg(ctx, instr->operands[3], 8) << 8; else if (!mubuf.lds) encoding |= reg(ctx, instr->definitions[0], 8) << 8; encoding |= reg(ctx, instr->operands[1], 8); out.push_back(encoding); } void emit_mubuf_instruction_gfx12(asm_context& ctx, std::vector& out, Instruction* instr) { uint32_t opcode = ctx.opcode[(int)instr->opcode]; MUBUF_instruction& mubuf = instr->mubuf(); assert(!mubuf.lds); uint32_t encoding = 0b110001 << 26; encoding |= opcode << 14; if (instr->operands[2].isConstant()) { assert(instr->operands[2].constantValue() == 0); encoding |= reg(ctx, sgpr_null); } else { encoding |= reg(ctx, instr->operands[2]); } encoding |= (mubuf.tfe ? 1 : 0) << 22; out.push_back(encoding); encoding = 0; if (instr->operands.size() > 3) encoding |= reg(ctx, instr->operands[3], 8); else encoding |= reg(ctx, instr->definitions[0], 8); encoding |= reg(ctx, instr->operands[0]) << 9; encoding |= (mubuf.offen ? 1 : 0) << 30; encoding |= (mubuf.idxen ? 1 : 0) << 31; encoding |= get_gfx12_cpol(mubuf) << 18; encoding |= 1 << 23; out.push_back(encoding); encoding = 0; if (!instr->operands[1].isUndefined()) encoding |= reg(ctx, instr->operands[1], 8); encoding |= (mubuf.offset & 0x00ffffff) << 8; out.push_back(encoding); } void emit_mtbuf_instruction(asm_context& ctx, std::vector& out, Instruction* instr) { uint32_t opcode = ctx.opcode[(int)instr->opcode]; MTBUF_instruction& mtbuf = instr->mtbuf(); bool glc = mtbuf.cache.value & ac_glc; bool slc = mtbuf.cache.value & ac_slc; bool dlc = mtbuf.cache.value & ac_dlc; uint32_t img_format = ac_get_tbuffer_format(ctx.gfx_level, mtbuf.dfmt, mtbuf.nfmt); assert(img_format <= 0x7F); assert(!dlc || ctx.gfx_level >= GFX10); uint32_t encoding = (0b111010 << 26); encoding |= (img_format << 19); /* Handles both the GFX10 FORMAT and the old NFMT+DFMT */ if (ctx.gfx_level < GFX8) { encoding |= opcode << 16; /* ADDR64 is unused */ } else if (ctx.gfx_level >= GFX10 && ctx.gfx_level < GFX11) { /* DLC bit replaces one bit of the OPCODE on GFX10 */ encoding |= (opcode & 0x07) << 16; /* 3 LSBs of 4-bit OPCODE */ encoding |= (dlc ? 1 : 0) << 15; } else { encoding |= opcode << 15; } encoding |= (glc ? 1 : 0) << 14; if (ctx.gfx_level >= GFX11) { encoding |= (dlc ? 1 : 0) << 13; encoding |= (slc ? 1 : 0) << 12; } else { encoding |= (mtbuf.idxen ? 1 : 0) << 13; encoding |= (mtbuf.offen ? 1 : 0) << 12; } encoding |= 0x0FFF & mtbuf.offset; out.push_back(encoding); encoding = 0; encoding |= reg(ctx, instr->operands[2]) << 24; if (ctx.gfx_level >= GFX11) { encoding |= (mtbuf.idxen ? 1 : 0) << 23; encoding |= (mtbuf.offen ? 1 : 0) << 22; encoding |= (mtbuf.tfe ? 1 : 0) << 21; } else { encoding |= (mtbuf.tfe ? 1 : 0) << 23; encoding |= (slc ? 1 : 0) << 22; if (ctx.gfx_level >= GFX10) encoding |= (((opcode & 0x08) >> 3) << 21); /* MSB of 4-bit OPCODE */ } encoding |= (reg(ctx, instr->operands[0]) >> 2) << 16; if (instr->operands.size() > 3) encoding |= reg(ctx, instr->operands[3], 8) << 8; else encoding |= reg(ctx, instr->definitions[0], 8) << 8; encoding |= reg(ctx, instr->operands[1], 8); out.push_back(encoding); } void emit_mtbuf_instruction_gfx12(asm_context& ctx, std::vector& out, Instruction* instr) { uint32_t opcode = ctx.opcode[(int)instr->opcode]; MTBUF_instruction& mtbuf = instr->mtbuf(); uint32_t img_format = ac_get_tbuffer_format(ctx.gfx_level, mtbuf.dfmt, mtbuf.nfmt); uint32_t encoding = 0b110001 << 26; encoding |= 0b1000 << 18; encoding |= opcode << 14; if (instr->operands[2].isConstant()) { assert(instr->operands[2].constantValue() == 0); encoding |= reg(ctx, sgpr_null); } else { encoding |= reg(ctx, instr->operands[2]); } encoding |= (mtbuf.tfe ? 1 : 0) << 22; out.push_back(encoding); encoding = 0; if (instr->operands.size() > 3) encoding |= reg(ctx, instr->operands[3], 8); else encoding |= reg(ctx, instr->definitions[0], 8); encoding |= reg(ctx, instr->operands[0]) << 9; encoding |= (mtbuf.offen ? 1 : 0) << 30; encoding |= (mtbuf.idxen ? 1 : 0) << 31; encoding |= get_gfx12_cpol(mtbuf) << 18; encoding |= img_format << 23; out.push_back(encoding); encoding = 0; encoding |= reg(ctx, instr->operands[1], 8); encoding |= (mtbuf.offset & 0x00ffffff) << 8; out.push_back(encoding); } void emit_mimg_instruction(asm_context& ctx, std::vector& out, Instruction* instr) { uint32_t opcode = ctx.opcode[(int)instr->opcode]; MIMG_instruction& mimg = instr->mimg(); bool glc = mimg.cache.value & ac_glc; bool slc = mimg.cache.value & ac_slc; bool dlc = mimg.cache.value & ac_dlc; unsigned nsa_dwords = get_mimg_nsa_dwords(instr); assert(!nsa_dwords || ctx.gfx_level >= GFX10); uint32_t encoding = (0b111100 << 26); if (ctx.gfx_level >= GFX11) { /* GFX11: rearranges most fields */ assert(nsa_dwords <= 1); encoding |= nsa_dwords; encoding |= mimg.dim << 2; encoding |= mimg.unrm ? 1 << 7 : 0; encoding |= (0xF & mimg.dmask) << 8; encoding |= slc ? 1 << 12 : 0; encoding |= dlc ? 1 << 13 : 0; encoding |= glc ? 1 << 14 : 0; encoding |= mimg.r128 ? 1 << 15 : 0; encoding |= mimg.a16 ? 1 << 16 : 0; encoding |= mimg.d16 ? 1 << 17 : 0; encoding |= (opcode & 0xFF) << 18; } else { encoding |= slc ? 1 << 25 : 0; encoding |= (opcode & 0x7f) << 18; encoding |= (opcode >> 7) & 1; encoding |= mimg.lwe ? 1 << 17 : 0; encoding |= mimg.tfe ? 1 << 16 : 0; encoding |= glc ? 1 << 13 : 0; encoding |= mimg.unrm ? 1 << 12 : 0; if (ctx.gfx_level <= GFX9) { assert(!dlc); /* Device-level coherent is not supported on GFX9 and lower */ assert(!mimg.r128); encoding |= mimg.a16 ? 1 << 15 : 0; encoding |= mimg.da ? 1 << 14 : 0; } else { encoding |= mimg.r128 ? 1 << 15 : 0; /* GFX10: A16 moved to 2nd word, R128 replaces it in 1st word */ encoding |= nsa_dwords << 1; encoding |= mimg.dim << 3; /* GFX10: dimensionality instead of declare array */ encoding |= dlc ? 1 << 7 : 0; } encoding |= (0xF & mimg.dmask) << 8; } out.push_back(encoding); encoding = reg(ctx, instr->operands[3], 8); /* VADDR */ if (!instr->definitions.empty()) { encoding |= reg(ctx, instr->definitions[0], 8) << 8; /* VDATA */ } else if (!instr->operands[2].isUndefined()) { encoding |= reg(ctx, instr->operands[2], 8) << 8; /* VDATA */ } encoding |= (0x1F & (reg(ctx, instr->operands[0]) >> 2)) << 16; /* T# (resource) */ assert(!mimg.d16 || ctx.gfx_level >= GFX9); if (ctx.gfx_level >= GFX11) { if (!instr->operands[1].isUndefined()) encoding |= (0x1F & (reg(ctx, instr->operands[1]) >> 2)) << 26; /* sampler */ encoding |= mimg.tfe ? 1 << 21 : 0; encoding |= mimg.lwe ? 1 << 22 : 0; } else { if (!instr->operands[1].isUndefined()) encoding |= (0x1F & (reg(ctx, instr->operands[1]) >> 2)) << 21; /* sampler */ encoding |= mimg.d16 ? 1 << 31 : 0; if (ctx.gfx_level >= GFX10) { /* GFX10: A16 still exists, but is in a different place */ encoding |= mimg.a16 ? 1 << 30 : 0; } } out.push_back(encoding); if (nsa_dwords) { out.resize(out.size() + nsa_dwords); std::vector::iterator nsa = std::prev(out.end(), nsa_dwords); for (unsigned i = 0; i < instr->operands.size() - 4u; i++) nsa[i / 4] |= reg(ctx, instr->operands[4 + i], 8) << (i % 4 * 8); } } void emit_mimg_instruction_gfx12(asm_context& ctx, std::vector& out, Instruction* instr) { uint32_t opcode = ctx.opcode[(int)instr->opcode]; MIMG_instruction& mimg = instr->mimg(); bool vsample = !instr->operands[1].isUndefined() || instr->opcode == aco_opcode::image_msaa_load; uint32_t encoding = opcode << 14; if (vsample) { encoding |= 0b111001 << 26; encoding |= mimg.tfe << 3; encoding |= mimg.unrm << 13; } else { encoding |= 0b110100 << 26; } encoding |= mimg.dim; encoding |= mimg.r128 << 4; encoding |= mimg.d16 << 5; encoding |= mimg.a16 << 6; encoding |= (mimg.dmask & 0xf) << 22; out.push_back(encoding); uint8_t vaddr[5] = {0, 0, 0, 0, 0}; for (unsigned i = 3; i < instr->operands.size(); i++) vaddr[i - 3] = reg(ctx, instr->operands[i], 8); unsigned num_vaddr = instr->operands.size() - 3; for (unsigned i = 0; i < MIN2(instr->operands.back().size() - 1, 5 - num_vaddr); i++) vaddr[num_vaddr + i] = reg(ctx, instr->operands.back(), 8) + i + 1; encoding = 0; if (!instr->definitions.empty()) encoding |= reg(ctx, instr->definitions[0], 8); /* VDATA */ else if (!instr->operands[2].isUndefined()) encoding |= reg(ctx, instr->operands[2], 8); /* VDATA */ encoding |= reg(ctx, instr->operands[0]) << 9; /* T# (resource) */ if (vsample) { encoding |= mimg.lwe << 8; if (instr->opcode != aco_opcode::image_msaa_load) encoding |= reg(ctx, instr->operands[1]) << 23; /* sampler */ } else { encoding |= mimg.tfe << 23; encoding |= vaddr[4] << 24; } encoding |= get_gfx12_cpol(mimg) << 18; out.push_back(encoding); encoding = 0; for (unsigned i = 0; i < 4; i++) encoding |= vaddr[i] << (i * 8); out.push_back(encoding); } void emit_flatlike_instruction(asm_context& ctx, std::vector& out, Instruction* instr) { uint32_t opcode = ctx.opcode[(int)instr->opcode]; FLAT_instruction& flat = instr->flatlike(); bool glc = flat.cache.value & ac_glc; bool slc = flat.cache.value & ac_slc; bool dlc = flat.cache.value & ac_dlc; uint32_t encoding = (0b110111 << 26); encoding |= opcode << 18; if (ctx.gfx_level == GFX9 || ctx.gfx_level >= GFX11) { if (instr->isFlat()) assert(flat.offset <= 0xfff); else assert(flat.offset >= -4096 && flat.offset < 4096); encoding |= flat.offset & 0x1fff; } else if (ctx.gfx_level <= GFX8 || instr->isFlat()) { /* GFX10 has a 12-bit immediate OFFSET field, * but it has a hw bug: it ignores the offset, called FlatSegmentOffsetBug */ assert(flat.offset == 0); } else { assert(flat.offset >= -2048 && flat.offset <= 2047); encoding |= flat.offset & 0xfff; } if (instr->isScratch()) encoding |= 1 << (ctx.gfx_level >= GFX11 ? 16 : 14); else if (instr->isGlobal()) encoding |= 2 << (ctx.gfx_level >= GFX11 ? 16 : 14); encoding |= flat.lds ? 1 << 13 : 0; encoding |= glc ? 1 << (ctx.gfx_level >= GFX11 ? 14 : 16) : 0; encoding |= slc ? 1 << (ctx.gfx_level >= GFX11 ? 15 : 17) : 0; if (ctx.gfx_level >= GFX10) { assert(!flat.nv); encoding |= dlc ? 1 << (ctx.gfx_level >= GFX11 ? 13 : 12) : 0; } else { assert(!dlc); } out.push_back(encoding); encoding = reg(ctx, instr->operands[0], 8); if (!instr->definitions.empty()) encoding |= reg(ctx, instr->definitions[0], 8) << 24; if (instr->operands.size() >= 3) encoding |= reg(ctx, instr->operands[2], 8) << 8; if (!instr->operands[1].isUndefined()) { assert(ctx.gfx_level >= GFX10 || instr->operands[1].physReg() != 0x7F); assert(instr->format != Format::FLAT); encoding |= reg(ctx, instr->operands[1], 8) << 16; } else if (instr->format != Format::FLAT || ctx.gfx_level >= GFX10) { /* SADDR is actually used with FLAT on GFX10 */ /* For GFX10.3 scratch, 0x7F disables both ADDR and SADDR, unlike sgpr_null, which only * disables SADDR. On GFX11, this was replaced with SVE. */ if (ctx.gfx_level <= GFX9 || (instr->isScratch() && instr->operands[0].isUndefined() && ctx.gfx_level < GFX11)) encoding |= 0x7F << 16; else encoding |= reg(ctx, sgpr_null) << 16; } if (ctx.gfx_level >= GFX11 && instr->isScratch()) encoding |= !instr->operands[0].isUndefined() ? 1 << 23 : 0; else encoding |= flat.nv ? 1 << 23 : 0; out.push_back(encoding); } void emit_flatlike_instruction_gfx12(asm_context& ctx, std::vector& out, Instruction* instr) { uint32_t opcode = ctx.opcode[(int)instr->opcode]; FLAT_instruction& flat = instr->flatlike(); assert(!flat.lds); uint32_t encoding = opcode << 14; encoding |= 0b111011 << 26; if (!instr->operands[1].isUndefined()) { assert(!instr->isFlat()); encoding |= reg(ctx, instr->operands[1]); } else { encoding |= reg(ctx, sgpr_null); } if (instr->isScratch()) encoding |= 1 << 24; else if (instr->isGlobal()) encoding |= 2 << 24; out.push_back(encoding); encoding = 0; if (!instr->definitions.empty()) encoding |= reg(ctx, instr->definitions[0], 8); if (instr->isScratch()) encoding |= !instr->operands[0].isUndefined() ? 1 << 17 : 0; encoding |= get_gfx12_cpol(flat) << 18; if (instr->operands.size() >= 3) encoding |= reg(ctx, instr->operands[2], 8) << 23; out.push_back(encoding); encoding = 0; if (!instr->operands[0].isUndefined()) encoding |= reg(ctx, instr->operands[0], 8); encoding |= (flat.offset & 0x00ffffff) << 8; out.push_back(encoding); } void emit_exp_instruction(asm_context& ctx, std::vector& out, Instruction* instr) { Export_instruction& exp = instr->exp(); uint32_t encoding; if (ctx.gfx_level == GFX8 || ctx.gfx_level == GFX9) { encoding = (0b110001 << 26); } else { encoding = (0b111110 << 26); } if (ctx.gfx_level >= GFX11) { encoding |= exp.row_en ? 0b1 << 13 : 0; } else { encoding |= exp.valid_mask ? 0b1 << 12 : 0; encoding |= exp.compressed ? 0b1 << 10 : 0; } encoding |= exp.done ? 0b1 << 11 : 0; encoding |= exp.dest << 4; encoding |= exp.enabled_mask; out.push_back(encoding); encoding = reg(ctx, exp.operands[0], 8); encoding |= reg(ctx, exp.operands[1], 8) << 8; encoding |= reg(ctx, exp.operands[2], 8) << 16; encoding |= reg(ctx, exp.operands[3], 8) << 24; out.push_back(encoding); } void emit_instruction(asm_context& ctx, std::vector& out, Instruction* instr); void emit_dpp16_instruction(asm_context& ctx, std::vector& out, Instruction* instr) { assert(ctx.gfx_level >= GFX8); DPP16_instruction& dpp = instr->dpp16(); /* first emit the instruction without the DPP operand */ Operand dpp_op = instr->operands[0]; instr->operands[0] = Operand(PhysReg{250}, v1); instr->format = (Format)((uint16_t)instr->format & ~(uint16_t)Format::DPP16); emit_instruction(ctx, out, instr); uint32_t encoding = (0xF & dpp.row_mask) << 28; encoding |= (0xF & dpp.bank_mask) << 24; encoding |= dpp.abs[1] << 23; encoding |= dpp.neg[1] << 22; encoding |= dpp.abs[0] << 21; encoding |= dpp.neg[0] << 20; encoding |= dpp.fetch_inactive << 18; encoding |= dpp.bound_ctrl << 19; encoding |= dpp.dpp_ctrl << 8; encoding |= reg(ctx, dpp_op, 8); encoding |= dpp.opsel[0] && !instr->isVOP3() ? 128 : 0; out.push_back(encoding); } void emit_dpp8_instruction(asm_context& ctx, std::vector& out, Instruction* instr) { assert(ctx.gfx_level >= GFX10); DPP8_instruction& dpp = instr->dpp8(); /* first emit the instruction without the DPP operand */ Operand dpp_op = instr->operands[0]; instr->operands[0] = Operand(PhysReg{233u + dpp.fetch_inactive}, v1); instr->format = (Format)((uint16_t)instr->format & ~(uint16_t)Format::DPP8); emit_instruction(ctx, out, instr); uint32_t encoding = reg(ctx, dpp_op, 8); encoding |= dpp.opsel[0] && !instr->isVOP3() ? 128 : 0; encoding |= dpp.lane_sel << 8; out.push_back(encoding); } void emit_vop3_instruction(asm_context& ctx, std::vector& out, Instruction* instr) { uint32_t opcode = ctx.opcode[(int)instr->opcode]; VALU_instruction& vop3 = instr->valu(); if (instr->isVOP2()) { opcode = opcode + 0x100; } else if (instr->isVOP1()) { if (ctx.gfx_level == GFX8 || ctx.gfx_level == GFX9) opcode = opcode + 0x140; else opcode = opcode + 0x180; } else if (instr->isVOPC()) { opcode = opcode + 0x0; } else if (instr->isVINTRP()) { opcode = opcode + 0x270; } uint32_t encoding; if (ctx.gfx_level <= GFX9) { encoding = (0b110100 << 26); } else if (ctx.gfx_level >= GFX10) { encoding = (0b110101 << 26); } else { unreachable("Unknown gfx_level."); } if (ctx.gfx_level <= GFX7) { encoding |= opcode << 17; encoding |= (vop3.clamp ? 1 : 0) << 11; } else { encoding |= opcode << 16; encoding |= (vop3.clamp ? 1 : 0) << 15; } encoding |= vop3.opsel << 11; for (unsigned i = 0; i < 3; i++) encoding |= vop3.abs[i] << (8 + i); /* On GFX9 and older, v_cmpx implicitly writes exec besides writing an SGPR pair. * On GFX10 and newer, v_cmpx always writes just exec. */ if (instr->definitions.size() == 2 && instr->isVOPC()) assert(ctx.gfx_level <= GFX9 && instr->definitions[1].physReg() == exec); else if (instr->definitions.size() == 2 && instr->opcode != aco_opcode::v_swap_b16) encoding |= reg(ctx, instr->definitions[1]) << 8; encoding |= reg(ctx, instr->definitions[0], 8); out.push_back(encoding); encoding = 0; unsigned num_ops = instr->operands.size(); /* Encoding implicit sources works fine with hardware but breaks some disassemblers. */ if (instr->opcode == aco_opcode::v_writelane_b32_e64) num_ops = 2; else if (instr->opcode == aco_opcode::v_swap_b16) num_ops = 1; for (unsigned i = 0; i < num_ops; i++) encoding |= reg(ctx, instr->operands[i]) << (i * 9); encoding |= vop3.omod << 27; for (unsigned i = 0; i < 3; i++) encoding |= vop3.neg[i] << (29 + i); out.push_back(encoding); } void emit_vop3p_instruction(asm_context& ctx, std::vector& out, Instruction* instr) { uint32_t opcode = ctx.opcode[(int)instr->opcode]; VALU_instruction& vop3 = instr->valu(); uint32_t encoding; if (ctx.gfx_level == GFX9) { encoding = (0b110100111 << 23); } else if (ctx.gfx_level >= GFX10) { encoding = (0b110011 << 26); } else { unreachable("Unknown gfx_level."); } encoding |= opcode << 16; encoding |= (vop3.clamp ? 1 : 0) << 15; encoding |= vop3.opsel_lo << 11; encoding |= ((vop3.opsel_hi & 0x4) ? 1 : 0) << 14; for (unsigned i = 0; i < 3; i++) encoding |= vop3.neg_hi[i] << (8 + i); encoding |= reg(ctx, instr->definitions[0], 8); out.push_back(encoding); encoding = 0; for (unsigned i = 0; i < instr->operands.size(); i++) encoding |= reg(ctx, instr->operands[i]) << (i * 9); encoding |= (vop3.opsel_hi & 0x3) << 27; for (unsigned i = 0; i < 3; i++) encoding |= vop3.neg_lo[i] << (29 + i); out.push_back(encoding); } void emit_sdwa_instruction(asm_context& ctx, std::vector& out, Instruction* instr) { assert(ctx.gfx_level >= GFX8 && ctx.gfx_level < GFX11); SDWA_instruction& sdwa = instr->sdwa(); /* first emit the instruction without the SDWA operand */ Operand sdwa_op = instr->operands[0]; instr->operands[0] = Operand(PhysReg{249}, v1); instr->format = (Format)((uint16_t)instr->format & ~(uint16_t)Format::SDWA); emit_instruction(ctx, out, instr); uint32_t encoding = 0; if (instr->isVOPC()) { if (instr->definitions[0].physReg() != (ctx.gfx_level >= GFX10 && is_cmpx(instr->opcode) ? exec : vcc)) { encoding |= reg(ctx, instr->definitions[0]) << 8; encoding |= 1 << 15; } encoding |= (sdwa.clamp ? 1 : 0) << 13; } else { encoding |= sdwa.dst_sel.to_sdwa_sel(instr->definitions[0].physReg().byte()) << 8; uint32_t dst_u = sdwa.dst_sel.sign_extend() ? 1 : 0; if (instr->definitions[0].bytes() < 4) /* dst_preserve */ dst_u = 2; encoding |= dst_u << 11; encoding |= (sdwa.clamp ? 1 : 0) << 13; encoding |= sdwa.omod << 14; } encoding |= sdwa.sel[0].to_sdwa_sel(sdwa_op.physReg().byte()) << 16; encoding |= sdwa.sel[0].sign_extend() ? 1 << 19 : 0; encoding |= sdwa.abs[0] << 21; encoding |= sdwa.neg[0] << 20; if (instr->operands.size() >= 2) { encoding |= sdwa.sel[1].to_sdwa_sel(instr->operands[1].physReg().byte()) << 24; encoding |= sdwa.sel[1].sign_extend() ? 1 << 27 : 0; encoding |= sdwa.abs[1] << 29; encoding |= sdwa.neg[1] << 28; } encoding |= reg(ctx, sdwa_op, 8); encoding |= (sdwa_op.physReg() < 256) << 23; if (instr->operands.size() >= 2) encoding |= (instr->operands[1].physReg() < 256) << 31; out.push_back(encoding); } void emit_instruction(asm_context& ctx, std::vector& out, Instruction* instr) { /* lower remaining pseudo-instructions */ if (instr->opcode == aco_opcode::p_constaddr_getpc) { ctx.constaddrs[instr->operands[0].constantValue()].getpc_end = out.size() + 1; instr->opcode = aco_opcode::s_getpc_b64; instr->operands.pop_back(); } else if (instr->opcode == aco_opcode::p_constaddr_addlo) { ctx.constaddrs[instr->operands[2].constantValue()].add_literal = out.size() + 1; instr->opcode = aco_opcode::s_add_u32; instr->operands.pop_back(); assert(instr->operands[1].isConstant()); /* in case it's an inline constant, make it a literal */ instr->operands[1] = Operand::literal32(instr->operands[1].constantValue()); } else if (instr->opcode == aco_opcode::p_resumeaddr_getpc) { ctx.resumeaddrs[instr->operands[0].constantValue()].getpc_end = out.size() + 1; instr->opcode = aco_opcode::s_getpc_b64; instr->operands.pop_back(); } else if (instr->opcode == aco_opcode::p_resumeaddr_addlo) { ctx.resumeaddrs[instr->operands[2].constantValue()].add_literal = out.size() + 1; instr->opcode = aco_opcode::s_add_u32; instr->operands.pop_back(); assert(instr->operands[1].isConstant()); /* in case it's an inline constant, make it a literal */ instr->operands[1] = Operand::literal32(instr->operands[1].constantValue()); } else if (instr->opcode == aco_opcode::p_load_symbol) { assert(instr->operands[0].isConstant()); assert(ctx.symbols); struct aco_symbol info; info.id = (enum aco_symbol_id)instr->operands[0].constantValue(); info.offset = out.size() + 1; ctx.symbols->push_back(info); instr->opcode = aco_opcode::s_mov_b32; /* in case it's an inline constant, make it a literal */ instr->operands[0] = Operand::literal32(0); } /* Promote VOP12C to VOP3 if necessary. */ if ((instr->isVOP1() || instr->isVOP2() || instr->isVOPC()) && !instr->isVOP3() && needs_vop3_gfx11(ctx, instr)) { instr->format = asVOP3(instr->format); if (instr->opcode == aco_opcode::v_fmaak_f16) { instr->opcode = aco_opcode::v_fma_f16; instr->format = (Format)((uint32_t)instr->format & ~(uint32_t)Format::VOP2); } else if (instr->opcode == aco_opcode::v_fmamk_f16) { instr->valu().swapOperands(1, 2); instr->opcode = aco_opcode::v_fma_f16; instr->format = (Format)((uint32_t)instr->format & ~(uint32_t)Format::VOP2); } } uint32_t opcode = ctx.opcode[(int)instr->opcode]; if (opcode == (uint32_t)-1) { char* outmem; size_t outsize; struct u_memstream mem; u_memstream_open(&mem, &outmem, &outsize); FILE* const memf = u_memstream_get(&mem); fprintf(memf, "Unsupported opcode: "); aco_print_instr(ctx.gfx_level, instr, memf); u_memstream_close(&mem); aco_err(ctx.program, outmem); free(outmem); abort(); } switch (instr->format) { case Format::SOP2: { emit_sop2_instruction(ctx, out, instr); break; } case Format::SOPK: { emit_sopk_instruction(ctx, out, instr); break; } case Format::SOP1: { emit_sop1_instruction(ctx, out, instr); break; } case Format::SOPC: { emit_sopc_instruction(ctx, out, instr); break; } case Format::SOPP: { emit_sopp_instruction(ctx, out, instr); break; } case Format::SMEM: { emit_smem_instruction(ctx, out, instr); return; } case Format::VOP2: { emit_vop2_instruction(ctx, out, instr); break; } case Format::VOP1: { emit_vop1_instruction(ctx, out, instr); break; } case Format::VOPC: { emit_vopc_instruction(ctx, out, instr); break; } case Format::VINTRP: { emit_vintrp_instruction(ctx, out, instr); break; } case Format::VINTERP_INREG: { emit_vinterp_inreg_instruction(ctx, out, instr); break; } case Format::VOPD: { emit_vopd_instruction(ctx, out, instr); break; } case Format::DS: { emit_ds_instruction(ctx, out, instr); break; } case Format::LDSDIR: { emit_ldsdir_instruction(ctx, out, instr); break; } case Format::MUBUF: { if (ctx.gfx_level >= GFX12) emit_mubuf_instruction_gfx12(ctx, out, instr); else emit_mubuf_instruction(ctx, out, instr); break; } case Format::MTBUF: { if (ctx.gfx_level >= GFX12) emit_mtbuf_instruction_gfx12(ctx, out, instr); else emit_mtbuf_instruction(ctx, out, instr); break; } case Format::MIMG: { if (ctx.gfx_level >= GFX12) emit_mimg_instruction_gfx12(ctx, out, instr); else emit_mimg_instruction(ctx, out, instr); break; } case Format::FLAT: case Format::SCRATCH: case Format::GLOBAL: { if (ctx.gfx_level >= GFX12) emit_flatlike_instruction_gfx12(ctx, out, instr); else emit_flatlike_instruction(ctx, out, instr); break; } case Format::EXP: { emit_exp_instruction(ctx, out, instr); break; } case Format::PSEUDO: case Format::PSEUDO_BARRIER: if (instr->opcode != aco_opcode::p_unit_test) unreachable("Pseudo instructions should be lowered before assembly."); break; default: if (instr->isDPP16()) { emit_dpp16_instruction(ctx, out, instr); return; } else if (instr->isDPP8()) { emit_dpp8_instruction(ctx, out, instr); return; } else if (instr->isVOP3()) { emit_vop3_instruction(ctx, out, instr); } else if (instr->isVOP3P()) { emit_vop3p_instruction(ctx, out, instr); } else if (instr->isSDWA()) { emit_sdwa_instruction(ctx, out, instr); } else { unreachable("unimplemented instruction format"); } break; } /* append literal dword */ for (const Operand& op : instr->operands) { if (op.isLiteral()) { out.push_back(op.constantValue()); break; } } } void emit_block(asm_context& ctx, std::vector& out, Block& block) { for (aco_ptr& instr : block.instructions) { #if 0 int start_idx = out.size(); std::cerr << "Encoding:\t" << std::endl; aco_print_instr(&*instr, stderr); std::cerr << std::endl; #endif emit_instruction(ctx, out, instr.get()); #if 0 for (int i = start_idx; i < out.size(); i++) std::cerr << "encoding: " << "0x" << std::setfill('0') << std::setw(8) << std::hex << out[i] << std::endl; #endif } } void fix_exports(asm_context& ctx, std::vector& out, Program* program) { bool exported = false; for (Block& block : program->blocks) { if (!(block.kind & block_kind_export_end)) continue; std::vector>::reverse_iterator it = block.instructions.rbegin(); while (it != block.instructions.rend()) { if ((*it)->isEXP()) { Export_instruction& exp = (*it)->exp(); if (program->stage.hw == AC_HW_VERTEX_SHADER || program->stage.hw == AC_HW_NEXT_GEN_GEOMETRY_SHADER) { if (exp.dest >= V_008DFC_SQ_EXP_POS && exp.dest <= (V_008DFC_SQ_EXP_POS + 3)) { exp.done = true; exported = true; break; } } else { exp.done = true; exp.valid_mask = true; exported = true; break; } } else if ((*it)->definitions.size() && (*it)->definitions[0].physReg() == exec) { break; } ++it; } } /* GFX10+ FS may not export anything if no discard is used. */ bool may_skip_export = program->stage.hw == AC_HW_PIXEL_SHADER && program->gfx_level >= GFX10; if (!exported && !may_skip_export) { /* Abort in order to avoid a GPU hang. */ bool is_vertex_or_ngg = (program->stage.hw == AC_HW_VERTEX_SHADER || program->stage.hw == AC_HW_NEXT_GEN_GEOMETRY_SHADER); aco_err(program, "Missing export in %s shader:", is_vertex_or_ngg ? "vertex or NGG" : "fragment"); aco_print_program(program, stderr); abort(); } } static void insert_code(asm_context& ctx, std::vector& out, unsigned insert_before, unsigned insert_count, const uint32_t* insert_data) { out.insert(out.begin() + insert_before, insert_data, insert_data + insert_count); /* Update the offset of each affected block */ for (Block& block : ctx.program->blocks) { if (block.offset >= insert_before) block.offset += insert_count; } /* Find first branch after the inserted code */ auto branch_it = std::find_if(ctx.branches.begin(), ctx.branches.end(), [insert_before](const auto& branch) -> bool { return (unsigned)branch.first >= insert_before; }); /* Update the locations of branches */ for (; branch_it != ctx.branches.end(); ++branch_it) branch_it->first += insert_count; /* Update the locations of p_constaddr instructions */ for (auto& constaddr : ctx.constaddrs) { constaddr_info& info = constaddr.second; if (info.getpc_end >= insert_before) info.getpc_end += insert_count; if (info.add_literal >= insert_before) info.add_literal += insert_count; } for (auto& constaddr : ctx.resumeaddrs) { constaddr_info& info = constaddr.second; if (info.getpc_end >= insert_before) info.getpc_end += insert_count; if (info.add_literal >= insert_before) info.add_literal += insert_count; } if (ctx.symbols) { for (auto& symbol : *ctx.symbols) { if (symbol.offset >= insert_before) symbol.offset += insert_count; } } } static void fix_branches_gfx10(asm_context& ctx, std::vector& out) { /* Branches with an offset of 0x3f are buggy on GFX10, * we workaround by inserting NOPs if needed. */ bool gfx10_3f_bug = false; do { auto buggy_branch_it = std::find_if( ctx.branches.begin(), ctx.branches.end(), [&ctx](const auto& branch) -> bool { return ((int)ctx.program->blocks[branch.second->imm].offset - branch.first - 1) == 0x3f; }); gfx10_3f_bug = buggy_branch_it != ctx.branches.end(); if (gfx10_3f_bug) { /* Insert an s_nop after the branch */ constexpr uint32_t s_nop_0 = 0xbf800000u; insert_code(ctx, out, buggy_branch_it->first + 1, 1, &s_nop_0); } } while (gfx10_3f_bug); } void emit_long_jump(asm_context& ctx, SALU_instruction* branch, bool backwards, std::vector& out) { Builder bld(ctx.program); Definition def; if (branch->definitions.empty()) { assert(ctx.program->blocks[branch->imm].kind & block_kind_discard_early_exit); def = Definition(PhysReg(0), s2); /* The discard early exit block doesn't use SGPRs. */ } else { def = branch->definitions[0]; } Definition def_tmp_lo(def.physReg(), s1); Operand op_tmp_lo(def.physReg(), s1); Definition def_tmp_hi(def.physReg().advance(4), s1); Operand op_tmp_hi(def.physReg().advance(4), s1); aco_ptr instr; if (branch->opcode != aco_opcode::s_branch) { /* for conditional branches, skip the long jump if the condition is false */ aco_opcode inv; switch (branch->opcode) { case aco_opcode::s_cbranch_scc0: inv = aco_opcode::s_cbranch_scc1; break; case aco_opcode::s_cbranch_scc1: inv = aco_opcode::s_cbranch_scc0; break; case aco_opcode::s_cbranch_vccz: inv = aco_opcode::s_cbranch_vccnz; break; case aco_opcode::s_cbranch_vccnz: inv = aco_opcode::s_cbranch_vccz; break; case aco_opcode::s_cbranch_execz: inv = aco_opcode::s_cbranch_execnz; break; case aco_opcode::s_cbranch_execnz: inv = aco_opcode::s_cbranch_execz; break; default: unreachable("Unhandled long jump."); } unsigned size = ctx.gfx_level >= GFX12 ? 7 : 6; instr.reset(bld.sopp(inv, size)); emit_sopp_instruction(ctx, out, instr.get(), true); } /* create the new PC and stash SCC in the LSB */ instr.reset(bld.sop1(aco_opcode::s_getpc_b64, def).instr); emit_instruction(ctx, out, instr.get()); if (ctx.gfx_level >= GFX12) { instr.reset(bld.sop1(aco_opcode::s_sext_i32_i16, def_tmp_hi, op_tmp_hi).instr); emit_instruction(ctx, out, instr.get()); } instr.reset( bld.sop2(aco_opcode::s_addc_u32, def_tmp_lo, op_tmp_lo, Operand::literal32(0)).instr); emit_instruction(ctx, out, instr.get()); branch->pass_flags = out.size(); /* s_addc_u32 for high 32 bits not needed because the program is in a 32-bit VA range */ /* restore SCC and clear the LSB of the new PC */ instr.reset(bld.sopc(aco_opcode::s_bitcmp1_b32, def_tmp_lo, op_tmp_lo, Operand::zero()).instr); emit_instruction(ctx, out, instr.get()); instr.reset(bld.sop1(aco_opcode::s_bitset0_b32, def_tmp_lo, Operand::zero()).instr); emit_instruction(ctx, out, instr.get()); /* create the s_setpc_b64 to jump */ instr.reset(bld.sop1(aco_opcode::s_setpc_b64, Operand(def.physReg(), s2)).instr); emit_instruction(ctx, out, instr.get()); } void fix_branches(asm_context& ctx, std::vector& out) { bool repeat = false; do { repeat = false; if (ctx.gfx_level == GFX10) fix_branches_gfx10(ctx, out); for (std::pair& branch : ctx.branches) { int offset = (int)ctx.program->blocks[branch.second->imm].offset - branch.first - 1; if ((offset < INT16_MIN || offset > INT16_MAX) && !branch.second->pass_flags) { std::vector long_jump; bool backwards = ctx.program->blocks[branch.second->imm].offset < (unsigned)branch.first; emit_long_jump(ctx, branch.second, backwards, long_jump); out[branch.first] = long_jump[0]; insert_code(ctx, out, branch.first + 1, long_jump.size() - 1, long_jump.data() + 1); repeat = true; break; } if (branch.second->pass_flags) { int after_getpc = branch.first + branch.second->pass_flags - 2; offset = (int)ctx.program->blocks[branch.second->imm].offset - after_getpc; out[branch.first + branch.second->pass_flags - 1] = offset * 4; } else { out[branch.first] &= 0xffff0000u; out[branch.first] |= (uint16_t)offset; } } } while (repeat); } void fix_constaddrs(asm_context& ctx, std::vector& out) { for (auto& constaddr : ctx.constaddrs) { constaddr_info& info = constaddr.second; out[info.add_literal] += (out.size() - info.getpc_end) * 4u; if (ctx.symbols) { struct aco_symbol sym; sym.id = aco_symbol_const_data_addr; sym.offset = info.add_literal; ctx.symbols->push_back(sym); } } for (auto& addr : ctx.resumeaddrs) { constaddr_info& info = addr.second; const Block& block = ctx.program->blocks[out[info.add_literal]]; assert(block.kind & block_kind_resume); out[info.add_literal] = (block.offset - info.getpc_end) * 4u; } } void align_block(asm_context& ctx, std::vector& code, Block& block) { /* Blocks with block_kind_loop_exit might be eliminated after jump threading, so we instead find * loop exits using loop_nest_depth. */ if (ctx.loop_header && !block.linear_preds.empty() && block.loop_nest_depth < ctx.loop_header->loop_nest_depth) { Block* loop_header = ctx.loop_header; ctx.loop_header = NULL; std::vector nops; const unsigned loop_num_cl = DIV_ROUND_UP(block.offset - loop_header->offset, 16); /* On GFX10.3+, change the prefetch mode if the loop fits into 2 or 3 cache lines. * Don't use the s_inst_prefetch instruction on GFX10 as it might cause hangs. */ const bool change_prefetch = ctx.program->gfx_level >= GFX10_3 && ctx.program->gfx_level <= GFX11 && loop_num_cl > 1 && loop_num_cl <= 3; if (change_prefetch) { Builder bld(ctx.program); int16_t prefetch_mode = loop_num_cl == 3 ? 0x1 : 0x2; aco_ptr instr(bld.sopp(aco_opcode::s_inst_prefetch, prefetch_mode)); emit_instruction(ctx, nops, instr.get()); insert_code(ctx, code, loop_header->offset, nops.size(), nops.data()); /* Change prefetch mode back to default (0x3). */ instr->salu().imm = 0x3; emit_instruction(ctx, code, instr.get()); } const unsigned loop_start_cl = loop_header->offset >> 4; const unsigned loop_end_cl = (block.offset - 1) >> 4; /* Align the loop if it fits into the fetched cache lines or if we can * reduce the number of cache lines with less than 8 NOPs. */ const bool align_loop = loop_end_cl - loop_start_cl >= loop_num_cl && (loop_num_cl == 1 || change_prefetch || loop_header->offset % 16 > 8); if (align_loop) { nops.clear(); nops.resize(16 - (loop_header->offset % 16), 0xbf800000u); insert_code(ctx, code, loop_header->offset, nops.size(), nops.data()); } } if (block.kind & block_kind_loop_header) { /* In case of nested loops, only handle the inner-most loops in order * to not break the alignment of inner loops by handling outer loops. * Also ignore loops without back-edge. */ ctx.loop_header = block.linear_preds.size() > 1 ? &block : NULL; } /* align resume shaders with cache line */ if (block.kind & block_kind_resume) { size_t cache_aligned = align(code.size(), 16); code.resize(cache_aligned, 0xbf800000u); /* s_nop 0 */ block.offset = code.size(); } } unsigned emit_program(Program* program, std::vector& code, std::vector* symbols, bool append_endpgm) { asm_context ctx(program, symbols); bool is_separately_compiled_ngg_vs_or_es = (program->stage.sw == SWStage::VS || program->stage.sw == SWStage::TES) && program->stage.hw == AC_HW_NEXT_GEN_GEOMETRY_SHADER && program->info.merged_shader_compiled_separately; /* Prolog has no exports. */ if (!program->is_prolog && !program->info.ps.has_epilog && !is_separately_compiled_ngg_vs_or_es && (program->stage.hw == AC_HW_VERTEX_SHADER || program->stage.hw == AC_HW_PIXEL_SHADER || program->stage.hw == AC_HW_NEXT_GEN_GEOMETRY_SHADER)) fix_exports(ctx, code, program); for (Block& block : program->blocks) { block.offset = code.size(); align_block(ctx, code, block); emit_block(ctx, code, block); } fix_branches(ctx, code); unsigned exec_size = code.size() * sizeof(uint32_t); /* Add end-of-code markers for the UMR disassembler. */ if (append_endpgm) code.resize(code.size() + 5, 0xbf9f0000u); fix_constaddrs(ctx, code); while (program->constant_data.size() % 4u) program->constant_data.push_back(0); /* Copy constant data */ code.insert(code.end(), (uint32_t*)program->constant_data.data(), (uint32_t*)(program->constant_data.data() + program->constant_data.size())); program->config->scratch_bytes_per_wave = align(program->config->scratch_bytes_per_wave, program->dev.scratch_alloc_granule); return exec_size; } } // namespace aco