//===-- Unittests for strtold ---------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/__support/FPUtil/FPBits.h" #include "src/__support/uint128.h" #include "src/errno/libc_errno.h" #include "src/stdlib/strtold.h" #include "test/UnitTest/Test.h" #include #if defined(LIBC_TYPES_LONG_DOUBLE_IS_FLOAT64) #define SELECT_CONST(val, _, __) val #elif defined(LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80) #define SELECT_CONST(_, val, __) val #elif defined(LIBC_TYPES_LONG_DOUBLE_IS_FLOAT128) #define SELECT_CONST(_, __, val) val #else #error "Unknown long double type" #endif class LlvmLibcStrToLDTest : public LIBC_NAMESPACE::testing::Test { public: #if defined(LIBC_TYPES_LONG_DOUBLE_IS_FLOAT64) void run_test(const char *inputString, const ptrdiff_t expectedStrLen, const uint64_t expectedRawData, const int expectedErrno = 0) #else void run_test(const char *inputString, const ptrdiff_t expectedStrLen, const UInt128 expectedRawData, const int expectedErrno = 0) #endif { // expectedRawData64 is the expected long double result as a uint64_t, // organized according to the IEEE754 double precision format: // // +-- 1 Sign Bit +-- 52 Mantissa bits // | | // | +-------------------------+------------------------+ // | | | // SEEEEEEEEEEEMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM // | | // +----+----+ // | // +-- 11 Exponent Bits // expectedRawData80 is the expected long double result as a UInt128, // organized according to the x86 extended precision format: // // +-- 1 Sign Bit // | // | +-- 1 Integer part bit (1 unless this is a subnormal) // | | // SEEEEEEEEEEEEEEEIMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM...M // | | | | // +------+------+ +---------------------------+--------------------------+ // | | // +-- 15 Exponent Bits +-- 63 Mantissa bits // expectedRawData128 is the expected long double result as a UInt128, // organized according to IEEE754 quadruple precision format: // // +-- 1 Sign Bit +-- 112 Mantissa bits // | | // | +----------------------------+--------------------------+ // | | | // SEEEEEEEEEEEEEEEMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM...M // | | // +------+------+ // | // +-- 15 Exponent Bits char *str_end = nullptr; using FPBits = LIBC_NAMESPACE::fputil::FPBits; FPBits expected_fp = FPBits(static_cast(expectedRawData)); const int expected_errno = expectedErrno; LIBC_NAMESPACE::libc_errno = 0; long double result = LIBC_NAMESPACE::strtold(inputString, &str_end); LIBC_NAMESPACE::fputil::FPBits actual_fp = LIBC_NAMESPACE::fputil::FPBits(); actual_fp = LIBC_NAMESPACE::fputil::FPBits(result); EXPECT_EQ(str_end - inputString, expectedStrLen); EXPECT_EQ(actual_fp.uintval(), expected_fp.uintval()); EXPECT_EQ(actual_fp.is_neg(), expected_fp.is_neg()); EXPECT_EQ(actual_fp.get_exponent(), expected_fp.get_exponent()); EXPECT_EQ(actual_fp.get_mantissa(), expected_fp.get_mantissa()); ASSERT_ERRNO_EQ(expected_errno); } }; TEST_F(LlvmLibcStrToLDTest, SimpleTest) { run_test("123", 3, SELECT_CONST(uint64_t(0x405ec00000000000), UInt128(0x4005f60000) << 40, UInt128(0x4005ec0000000000) << 64)); // This should fail on Eisel-Lemire, forcing a fallback to simple decimal // conversion. run_test("12345678901234549760", 20, SELECT_CONST(uint64_t(0x43e56a95319d63d8), (UInt128(0x403eab54a9) << 40) + UInt128(0x8ceb1ec400), (UInt128(0x403e56a95319d63d) << 64) + UInt128(0x8800000000000000))); // Found while looking for difficult test cases here: // https://github.com/nigeltao/parse-number-fxx-test-data/blob/main/more-test-cases/golang-org-issue-36657.txt run_test("1090544144181609348835077142190", 31, SELECT_CONST(uint64_t(0x462b8779f2474dfb), (UInt128(0x4062dc3bcf) << 40) + UInt128(0x923a6fd402), (UInt128(0x4062b8779f2474df) << 64) + UInt128(0xa804bfd8c6d5c000))); run_test("0x123", 5, SELECT_CONST(uint64_t(0x4072300000000000), (UInt128(0x4007918000) << 40), (UInt128(0x4007230000000000) << 64))); } // These are tests that have caused problems for doubles in the past. TEST_F(LlvmLibcStrToLDTest, Float64SpecificFailures) { run_test("3E70000000000000", 16, SELECT_CONST(uint64_t(0x7FF0000000000000), (UInt128(0x7fff800000) << 40), (UInt128(0x7fff000000000000) << 64)), ERANGE); run_test("358416272e-33", 13, SELECT_CONST(uint64_t(0x3adbbb2a68c9d0b9), (UInt128(0x3fadddd953) << 40) + UInt128(0x464e85c400), (UInt128(0x3fadbbb2a68c9d0b) << 64) + UInt128(0x8800e7969e1c5fc8))); run_test("2.16656806400000023841857910156251e9", 36, SELECT_CONST(uint64_t(0x41e0246690000001), (UInt128(0x401e812334) << 40) + UInt128(0x8000000400), (UInt128(0x401e024669000000) << 64) + UInt128(0x800000000000018))); run_test("27949676547093071875", 20, SELECT_CONST(uint64_t(0x43f83e132bc608c9), (UInt128(0x403fc1f099) << 40) + UInt128(0x5e30464402), (UInt128(0x403f83e132bc608c) << 64) + UInt128(0x8803000000000000))); } TEST_F(LlvmLibcStrToLDTest, Float80SpecificFailures) { run_test("7777777777777777777777777777777777777777777777777777777777777777777" "777777777777777777777777777777777", 100, SELECT_CONST(uint64_t(0x54ac729b8fcaf734), (UInt128(0x414ae394dc) << 40) + UInt128(0x7e57b9a0c2), (UInt128(0x414ac729b8fcaf73) << 64) + UInt128(0x4184a3d793224129))); } TEST_F(LlvmLibcStrToLDTest, MaxSizeNumbers) { run_test("1.1897314953572317650e4932", 26, SELECT_CONST(uint64_t(0x7FF0000000000000), (UInt128(0x7ffeffffff) << 40) + UInt128(0xffffffffff), (UInt128(0x7ffeffffffffffff) << 64) + UInt128(0xfffd57322e3f8675)), SELECT_CONST(ERANGE, 0, 0)); run_test("1.18973149535723176508e4932", 27, SELECT_CONST(uint64_t(0x7FF0000000000000), (UInt128(0x7fff800000) << 40), (UInt128(0x7ffeffffffffffff) << 64) + UInt128(0xffffd2478338036c)), SELECT_CONST(ERANGE, ERANGE, 0)); } // These tests check subnormal behavior for 80 bit and 128 bit floats. They will // be too small for 64 bit floats. TEST_F(LlvmLibcStrToLDTest, SubnormalTests) { run_test("1e-4950", 7, SELECT_CONST(uint64_t(0), (UInt128(0x00000000000000000003)), (UInt128(0x000000000000000000057c9647e1a018))), ERANGE); run_test("1.89e-4951", 10, SELECT_CONST(uint64_t(0), (UInt128(0x00000000000000000001)), (UInt128(0x0000000000000000000109778a006738))), ERANGE); run_test("4e-4966", 7, SELECT_CONST(uint64_t(0), (UInt128(0)), (UInt128(0x00000000000000000000000000000001))), ERANGE); } TEST_F(LlvmLibcStrToLDTest, SmallNormalTests) { run_test("3.37e-4932", 10, SELECT_CONST( uint64_t(0), (UInt128(0x1804cf7) << 40) + UInt128(0x908850712), (UInt128(0x10099ee12110a) << 64) + UInt128(0xe24b75c0f50dc0c)), SELECT_CONST(ERANGE, 0, 0)); } TEST_F(LlvmLibcStrToLDTest, ComplexHexadecimalTests) { run_test("0x1p16383", 9, SELECT_CONST(0x7ff0000000000000, (UInt128(0x7ffe800000) << 40), (UInt128(0x7ffe000000000000) << 64)), SELECT_CONST(ERANGE, 0, 0)); run_test("0x123456789abcdef", 17, SELECT_CONST(0x43723456789abcdf, (UInt128(0x403791a2b3) << 40) + UInt128(0xc4d5e6f780), (UInt128(0x403723456789abcd) << 64) + UInt128(0xef00000000000000))); run_test("0x123456789abcdef0123456789ABCDEF", 33, SELECT_CONST(0x47723456789abcdf, (UInt128(0x407791a2b3) << 40) + UInt128(0xc4d5e6f781), (UInt128(0x407723456789abcd) << 64) + UInt128(0xef0123456789abce))); } TEST_F(LlvmLibcStrToLDTest, InfTests) { run_test("INF", 3, SELECT_CONST(0x7ff0000000000000, (UInt128(0x7fff800000) << 40), (UInt128(0x7fff000000000000) << 64))); run_test("INFinity", 8, SELECT_CONST(0x7ff0000000000000, (UInt128(0x7fff800000) << 40), (UInt128(0x7fff000000000000) << 64))); run_test("-inf", 4, SELECT_CONST(0xfff0000000000000, (UInt128(0xffff800000) << 40), (UInt128(0xffff000000000000) << 64))); } TEST_F(LlvmLibcStrToLDTest, NaNTests) { run_test("NaN", 3, SELECT_CONST(0x7ff8000000000000, (UInt128(0x7fffc00000) << 40), (UInt128(0x7fff800000000000) << 64))); run_test("-nAn", 4, SELECT_CONST(0xfff8000000000000, (UInt128(0xffffc00000) << 40), (UInt128(0xffff800000000000) << 64))); run_test("NaN()", 5, SELECT_CONST(0x7ff8000000000000, (UInt128(0x7fffc00000) << 40), (UInt128(0x7fff800000000000) << 64))); run_test("NaN(1234)", 9, SELECT_CONST(0x7ff80000000004d2, (UInt128(0x7fffc00000) << 40) + UInt128(0x4d2), (UInt128(0x7fff800000000000) << 64) + UInt128(0x4d2))); run_test("NaN(0xffffffffffff)", 19, SELECT_CONST(0x7ff8ffffffffffff, (UInt128(0x7fffc000ff) << 40) + UInt128(0xffffffffff), (UInt128(0x7fff800000000000) << 64) + UInt128(0xffffffffffff))); run_test("NaN(0xfffffffffffff)", 20, SELECT_CONST(0x7fffffffffffffff, (UInt128(0x7fffc00fff) << 40) + UInt128(0xffffffffff), (UInt128(0x7fff800000000000) << 64) + UInt128(0xfffffffffffff))); run_test("NaN(0xffffffffffffffff)", 23, SELECT_CONST(0x7fffffffffffffff, (UInt128(0x7fffffffff) << 40) + UInt128(0xffffffffff), (UInt128(0x7fff800000000000) << 64) + UInt128(0xffffffffffffffff))); run_test("NaN( 1234)", 3, SELECT_CONST(0x7ff8000000000000, (UInt128(0x7fffc00000) << 40), (UInt128(0x7fff800000000000) << 64))); }