//===-- Unittests for strtof ----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/__support/FPUtil/FPBits.h" #include "src/errno/libc_errno.h" #include "src/stdlib/strtof.h" #include "test/UnitTest/FPMatcher.h" #include "test/UnitTest/RoundingModeUtils.h" #include "test/UnitTest/Test.h" #include using LIBC_NAMESPACE::fputil::testing::ForceRoundingModeTest; using LIBC_NAMESPACE::fputil::testing::RoundingMode; class LlvmLibcStrToFTest : public LIBC_NAMESPACE::testing::Test, ForceRoundingModeTest { public: void run_test(const char *inputString, const ptrdiff_t expectedStrLen, const uint32_t expectedRawData, const int expectedErrno = 0) { // expectedRawData is the expected float result as a uint32_t, organized // according to IEEE754: // // +-- 1 Sign Bit +-- 23 Mantissa bits // | | // | +----------+----------+ // | | | // SEEEEEEEEMMMMMMMMMMMMMMMMMMMMMMM // | | // +--+---+ // | // +-- 8 Exponent Bits // // This is so that the result can be compared in parts. char *str_end = nullptr; LIBC_NAMESPACE::fputil::FPBits expected_fp = LIBC_NAMESPACE::fputil::FPBits(expectedRawData); LIBC_NAMESPACE::libc_errno = 0; float result = LIBC_NAMESPACE::strtof(inputString, &str_end); EXPECT_EQ(str_end - inputString, expectedStrLen); EXPECT_FP_EQ(result, expected_fp.get_val()); ASSERT_ERRNO_EQ(expectedErrno); } }; // This is the set of tests that I have working (verified correct when compared // to system libc). This is here so I don't break more things when I try to fix // them. TEST_F(LlvmLibcStrToFTest, BasicDecimalTests) { run_test("1", 1, 0x3f800000); run_test("123", 3, 0x42f60000); run_test("1234567890", 10, 0x4e932c06u); run_test("123456789012345678901", 21, 0x60d629d4); run_test("0.1", 3, 0x3dcccccdu); run_test(".1", 2, 0x3dcccccdu); run_test("-0.123456789", 12, 0xbdfcd6eau); run_test("0.11111111111111111111", 22, 0x3de38e39u); run_test("0.0000000000000000000000001", 27, 0x15f79688u); } TEST_F(LlvmLibcStrToFTest, DecimalOutOfRangeTests) { run_test("555E36", 6, 0x7f800000, ERANGE); run_test("1e-10000", 8, 0x0, ERANGE); } TEST_F(LlvmLibcStrToFTest, DecimalsWithRoundingProblems) { run_test("20040229", 8, 0x4b98e512); run_test("20040401", 8, 0x4b98e568); run_test("9E9", 3, 0x50061c46); } TEST_F(LlvmLibcStrToFTest, DecimalSubnormals) { run_test("1.4012984643248170709237295832899161312802619418765e-45", 55, 0x1, ERANGE); } TEST_F(LlvmLibcStrToFTest, DecimalWithLongExponent) { run_test("1e2147483648", 12, 0x7f800000, ERANGE); run_test("1e2147483646", 12, 0x7f800000, ERANGE); run_test("100e2147483646", 14, 0x7f800000, ERANGE); run_test("1e-2147483647", 13, 0x0, ERANGE); run_test("1e-2147483649", 13, 0x0, ERANGE); } TEST_F(LlvmLibcStrToFTest, BasicHexadecimalTests) { run_test("0x1", 3, 0x3f800000); run_test("0x10", 4, 0x41800000); run_test("0x11", 4, 0x41880000); run_test("0x0.1234", 8, 0x3d91a000); } TEST_F(LlvmLibcStrToFTest, HexadecimalSubnormalTests) { run_test("0x0.0000000000000000000000000000000002", 38, 0x4000, ERANGE); // This is the largest subnormal number as represented in hex run_test("0x0.00000000000000000000000000000003fffff8", 42, 0x7fffff, ERANGE); } TEST_F(LlvmLibcStrToFTest, HexadecimalSubnormalRoundingTests) { // This is the largest subnormal number that gets rounded down to 0 (as a // float) run_test("0x0.00000000000000000000000000000000000004", 42, 0x0, ERANGE); // This is slightly larger, and thus rounded up run_test("0x0.000000000000000000000000000000000000041", 43, 0x00000001, ERANGE); // These check that we're rounding to even properly run_test("0x0.0000000000000000000000000000000000000b", 42, 0x00000001, ERANGE); run_test("0x0.0000000000000000000000000000000000000c", 42, 0x00000002, ERANGE); // These check that we're rounding to even properly even when the input bits // are longer than the bit fields can contain. run_test("0x1.000000000000000000000p-150", 30, 0x00000000, ERANGE); run_test("0x1.000010000000000001000p-150", 30, 0x00000001, ERANGE); run_test("0x1.000100000000000001000p-134", 30, 0x00008001, ERANGE); run_test("0x1.FFFFFC000000000001000p-127", 30, 0x007FFFFF, ERANGE); run_test("0x1.FFFFFE000000000000000p-127", 30, 0x00800000); } TEST_F(LlvmLibcStrToFTest, HexadecimalNormalRoundingTests) { // This also checks the round to even behavior by checking three adjacent // numbers. // This gets rounded down to even run_test("0x123456500", 11, 0x4f91a2b2); // This doesn't get rounded at all run_test("0x123456600", 11, 0x4f91a2b3); // This gets rounded up to even run_test("0x123456700", 11, 0x4f91a2b4); // Correct rounding for long input run_test("0x1.000001000000000000000", 25, 0x3f800000); run_test("0x1.000001000000000000100", 25, 0x3f800001); } TEST_F(LlvmLibcStrToFTest, HexadecimalsWithRoundingProblems) { run_test("0xFFFFFFFF", 10, 0x4f800000); } TEST_F(LlvmLibcStrToFTest, HexadecimalOutOfRangeTests) { run_test("0x123456789123456789123456789123456789", 38, 0x7f800000, ERANGE); run_test("-0x123456789123456789123456789123456789", 39, 0xff800000, ERANGE); run_test("0x0.00000000000000000000000000000000000001", 42, 0x0, ERANGE); } TEST_F(LlvmLibcStrToFTest, InfTests) { run_test("INF", 3, 0x7f800000); run_test("INFinity", 8, 0x7f800000); run_test("infnity", 3, 0x7f800000); run_test("infinit", 3, 0x7f800000); run_test("infinfinit", 3, 0x7f800000); run_test("innf", 0, 0x0); run_test("-inf", 4, 0xff800000); run_test("-iNfInItY", 9, 0xff800000); } TEST_F(LlvmLibcStrToFTest, SimpleNaNTests) { run_test("NaN", 3, 0x7fc00000); run_test("-nAn", 4, 0xffc00000); } // These NaNs are of the form `NaN(n-character-sequence)` where the // n-character-sequence is 0 or more letters or numbers. If there is anything // other than a letter or a number, then the valid number is just `NaN`. If // the sequence is valid, then the interpretation of them is implementation // defined, in this case it's passed to strtoll with an automatic base, and // the result is put into the mantissa if it takes up the whole width of the // parentheses. TEST_F(LlvmLibcStrToFTest, NaNWithParenthesesEmptyTest) { run_test("NaN()", 5, 0x7fc00000); } TEST_F(LlvmLibcStrToFTest, NaNWithParenthesesValidNumberTests) { run_test("NaN(1234)", 9, 0x7fc004d2); run_test("NaN(0x1234)", 11, 0x7fc01234); run_test("NaN(01234)", 10, 0x7fc0029c); } TEST_F(LlvmLibcStrToFTest, NaNWithParenthesesInvalidSequenceTests) { run_test("NaN( 1234)", 3, 0x7fc00000); run_test("NaN(-1234)", 3, 0x7fc00000); run_test("NaN(asd&f)", 3, 0x7fc00000); run_test("NaN(123 )", 3, 0x7fc00000); run_test("NaN(123+asdf)", 3, 0x7fc00000); run_test("NaN(123", 3, 0x7fc00000); } TEST_F(LlvmLibcStrToFTest, NaNWithParenthesesValidSequenceInvalidNumberTests) { run_test("NaN(1a)", 7, 0x7fc00000); run_test("NaN(asdf)", 9, 0x7fc00000); run_test("NaN(1A1)", 8, 0x7fc00000); run_test("NaN(underscores_are_ok)", 23, 0x7fc00000); run_test( "NaN(1234567890qwertyuiopasdfghjklzxcvbnmQWERTYUIOPASDFGHJKLZXCVBNM_)", 68, 0x7fc00000); }