//===-- Implementation of mktime function ---------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/time/time_utils.h" #include "src/__support/CPP/limits.h" // INT_MIN, INT_MAX #include "src/__support/common.h" #include "src/__support/macros/config.h" namespace LIBC_NAMESPACE_DECL { namespace time_utils { using LIBC_NAMESPACE::time_utils::TimeConstants; static int64_t computeRemainingYears(int64_t daysPerYears, int64_t quotientYears, int64_t *remainingDays) { int64_t years = *remainingDays / daysPerYears; if (years == quotientYears) years--; *remainingDays -= years * daysPerYears; return years; } // First, divide "total_seconds" by the number of seconds in a day to get the // number of days since Jan 1 1970. The remainder will be used to calculate the // number of Hours, Minutes and Seconds. // // Then, adjust that number of days by a constant to be the number of days // since Mar 1 2000. Year 2000 is a multiple of 400, the leap year cycle. This // makes it easier to count how many leap years have passed using division. // // While calculating numbers of years in the days, the following algorithm // subdivides the days into the number of 400 years, the number of 100 years and // the number of 4 years. These numbers of cycle years are used in calculating // leap day. This is similar to the algorithm used in getNumOfLeapYearsBefore() // and isLeapYear(). Then compute the total number of years in days from these // subdivided units. // // Compute the number of months from the remaining days. Finally, adjust years // to be 1900 and months to be from January. int64_t update_from_seconds(int64_t total_seconds, struct tm *tm) { // Days in month starting from March in the year 2000. static const char daysInMonth[] = {31 /* Mar */, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 29}; constexpr time_t time_min = (sizeof(time_t) == 4) ? INT_MIN : INT_MIN * static_cast( TimeConstants::NUMBER_OF_SECONDS_IN_LEAP_YEAR); constexpr time_t time_max = (sizeof(time_t) == 4) ? INT_MAX : INT_MAX * static_cast( TimeConstants::NUMBER_OF_SECONDS_IN_LEAP_YEAR); time_t ts = static_cast(total_seconds); if (ts < time_min || ts > time_max) return time_utils::out_of_range(); int64_t seconds = total_seconds - TimeConstants::SECONDS_UNTIL2000_MARCH_FIRST; int64_t days = seconds / TimeConstants::SECONDS_PER_DAY; int64_t remainingSeconds = seconds % TimeConstants::SECONDS_PER_DAY; if (remainingSeconds < 0) { remainingSeconds += TimeConstants::SECONDS_PER_DAY; days--; } int64_t wday = (TimeConstants::WEEK_DAY_OF2000_MARCH_FIRST + days) % TimeConstants::DAYS_PER_WEEK; if (wday < 0) wday += TimeConstants::DAYS_PER_WEEK; // Compute the number of 400 year cycles. int64_t numOfFourHundredYearCycles = days / TimeConstants::DAYS_PER400_YEARS; int64_t remainingDays = days % TimeConstants::DAYS_PER400_YEARS; if (remainingDays < 0) { remainingDays += TimeConstants::DAYS_PER400_YEARS; numOfFourHundredYearCycles--; } // The remaining number of years after computing the number of // "four hundred year cycles" will be 4 hundred year cycles or less in 400 // years. int64_t numOfHundredYearCycles = computeRemainingYears( TimeConstants::DAYS_PER100_YEARS, 4, &remainingDays); // The remaining number of years after computing the number of // "hundred year cycles" will be 25 four year cycles or less in 100 years. int64_t numOfFourYearCycles = computeRemainingYears(TimeConstants::DAYS_PER4_YEARS, 25, &remainingDays); // The remaining number of years after computing the number of // "four year cycles" will be 4 one year cycles or less in 4 years. int64_t remainingYears = computeRemainingYears( TimeConstants::DAYS_PER_NON_LEAP_YEAR, 4, &remainingDays); // Calculate number of years from year 2000. int64_t years = remainingYears + 4 * numOfFourYearCycles + 100 * numOfHundredYearCycles + 400LL * numOfFourHundredYearCycles; int leapDay = !remainingYears && (numOfFourYearCycles || !numOfHundredYearCycles); // We add 31 and 28 for the number of days in January and February, since our // starting point was March 1st. int64_t yday = remainingDays + 31 + 28 + leapDay; if (yday >= TimeConstants::DAYS_PER_NON_LEAP_YEAR + leapDay) yday -= TimeConstants::DAYS_PER_NON_LEAP_YEAR + leapDay; int64_t months = 0; while (daysInMonth[months] <= remainingDays) { remainingDays -= daysInMonth[months]; months++; } if (months >= TimeConstants::MONTHS_PER_YEAR - 2) { months -= TimeConstants::MONTHS_PER_YEAR; years++; } if (years > INT_MAX || years < INT_MIN) return time_utils::out_of_range(); // All the data (years, month and remaining days) was calculated from // March, 2000. Thus adjust the data to be from January, 1900. tm->tm_year = static_cast(years + 2000 - TimeConstants::TIME_YEAR_BASE); tm->tm_mon = static_cast(months + 2); tm->tm_mday = static_cast(remainingDays + 1); tm->tm_wday = static_cast(wday); tm->tm_yday = static_cast(yday); tm->tm_hour = static_cast(remainingSeconds / TimeConstants::SECONDS_PER_HOUR); tm->tm_min = static_cast(remainingSeconds / TimeConstants::SECONDS_PER_MIN % TimeConstants::SECONDS_PER_MIN); tm->tm_sec = static_cast(remainingSeconds % TimeConstants::SECONDS_PER_MIN); // TODO(rtenneti): Need to handle timezone and update of tm_isdst. tm->tm_isdst = 0; return 0; } } // namespace time_utils } // namespace LIBC_NAMESPACE_DECL