//===-- Single-precision sin function -------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/math/sinf.h" #include "sincosf_utils.h" #include "src/__support/FPUtil/BasicOperations.h" #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/PolyEval.h" #include "src/__support/FPUtil/multiply_add.h" #include "src/__support/FPUtil/rounding_mode.h" #include "src/__support/common.h" #include "src/__support/macros/config.h" #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA #if defined(LIBC_TARGET_CPU_HAS_FMA) #include "range_reduction_fma.h" #else #include "range_reduction.h" #endif namespace LIBC_NAMESPACE_DECL { LLVM_LIBC_FUNCTION(float, sinf, (float x)) { using FPBits = typename fputil::FPBits; FPBits xbits(x); uint32_t x_u = xbits.uintval(); uint32_t x_abs = x_u & 0x7fff'ffffU; double xd = static_cast(x); // Range reduction: // For |x| > pi/32, we perform range reduction as follows: // Find k and y such that: // x = (k + y) * pi/32 // k is an integer // |y| < 0.5 // For small range (|x| < 2^45 when FMA instructions are available, 2^22 // otherwise), this is done by performing: // k = round(x * 32/pi) // y = x * 32/pi - k // For large range, we will omit all the higher parts of 32/pi such that the // least significant bits of their full products with x are larger than 63, // since sin((k + y + 64*i) * pi/32) = sin(x + i * 2pi) = sin(x). // // When FMA instructions are not available, we store the digits of 32/pi in // chunks of 28-bit precision. This will make sure that the products: // x * THIRTYTWO_OVER_PI_28[i] are all exact. // When FMA instructions are available, we simply store the digits of 32/pi in // chunks of doubles (53-bit of precision). // So when multiplying by the largest values of single precision, the // resulting output should be correct up to 2^(-208 + 128) ~ 2^-80. By the // worst-case analysis of range reduction, |y| >= 2^-38, so this should give // us more than 40 bits of accuracy. For the worst-case estimation of range // reduction, see for instances: // Elementary Functions by J-M. Muller, Chapter 11, // Handbook of Floating-Point Arithmetic by J-M. Muller et. al., // Chapter 10.2. // // Once k and y are computed, we then deduce the answer by the sine of sum // formula: // sin(x) = sin((k + y)*pi/32) // = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32) // The values of sin(k*pi/32) and cos(k*pi/32) for k = 0..31 are precomputed // and stored using a vector of 32 doubles. Sin(y*pi/32) and cos(y*pi/32) are // computed using degree-7 and degree-6 minimax polynomials generated by // Sollya respectively. // |x| <= pi/16 if (LIBC_UNLIKELY(x_abs <= 0x3e49'0fdbU)) { // |x| < 0x1.d12ed2p-12f if (LIBC_UNLIKELY(x_abs < 0x39e8'9769U)) { if (LIBC_UNLIKELY(x_abs == 0U)) { // For signed zeros. return x; } // When |x| < 2^-12, the relative error of the approximation sin(x) ~ x // is: // |sin(x) - x| / |sin(x)| < |x^3| / (6|x|) // = x^2 / 6 // < 2^-25 // < epsilon(1)/2. // So the correctly rounded values of sin(x) are: // = x - sign(x)*eps(x) if rounding mode = FE_TOWARDZERO, // or (rounding mode = FE_UPWARD and x is // negative), // = x otherwise. // To simplify the rounding decision and make it more efficient, we use // fma(x, -2^-25, x) instead. // An exhaustive test shows that this formula work correctly for all // rounding modes up to |x| < 0x1.c555dep-11f. // Note: to use the formula x - 2^-25*x to decide the correct rounding, we // do need fma(x, -2^-25, x) to prevent underflow caused by -2^-25*x when // |x| < 2^-125. For targets without FMA instructions, we simply use // double for intermediate results as it is more efficient than using an // emulated version of FMA. #if defined(LIBC_TARGET_CPU_HAS_FMA) return fputil::multiply_add(x, -0x1.0p-25f, x); #else return static_cast(fputil::multiply_add(xd, -0x1.0p-25, xd)); #endif // LIBC_TARGET_CPU_HAS_FMA } // |x| < pi/16. double xsq = xd * xd; // Degree-9 polynomial approximation: // sin(x) ~ x + a_3 x^3 + a_5 x^5 + a_7 x^7 + a_9 x^9 // = x (1 + a_3 x^2 + ... + a_9 x^8) // = x * P(x^2) // generated by Sollya with the following commands: // > display = hexadecimal; // > Q = fpminimax(sin(x)/x, [|0, 2, 4, 6, 8|], [|1, D...|], [0, pi/16]); double result = fputil::polyeval(xsq, 1.0, -0x1.55555555554c6p-3, 0x1.1111111085e65p-7, -0x1.a019f70fb4d4fp-13, 0x1.718d179815e74p-19); return static_cast(xd * result); } if (LIBC_UNLIKELY(x_abs == 0x4619'9998U)) { // x = 0x1.33333p13 float r = -0x1.63f4bap-2f; int rounding = fputil::quick_get_round(); if ((rounding == FE_DOWNWARD && xbits.is_pos()) || (rounding == FE_UPWARD && xbits.is_neg())) r = -0x1.63f4bcp-2f; return xbits.is_neg() ? -r : r; } if (LIBC_UNLIKELY(x_abs >= 0x7f80'0000U)) { if (x_abs == 0x7f80'0000U) { fputil::set_errno_if_required(EDOM); fputil::raise_except_if_required(FE_INVALID); } return x + FPBits::quiet_nan().get_val(); } // Combine the results with the sine of sum formula: // sin(x) = sin((k + y)*pi/32) // = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32) // = sin_y * cos_k + (1 + cosm1_y) * sin_k // = sin_y * cos_k + (cosm1_y * sin_k + sin_k) double sin_k, cos_k, sin_y, cosm1_y; sincosf_eval(xd, x_abs, sin_k, cos_k, sin_y, cosm1_y); return static_cast(fputil::multiply_add( sin_y, cos_k, fputil::multiply_add(cosm1_y, sin_k, sin_k))); } } // namespace LIBC_NAMESPACE_DECL