//===-- Compute sin + cos for small angles ----------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_LIBC_SRC_MATH_GENERIC_SINCOS_EVAL_H #define LLVM_LIBC_SRC_MATH_GENERIC_SINCOS_EVAL_H #include "src/__support/FPUtil/PolyEval.h" #include "src/__support/FPUtil/double_double.h" #include "src/__support/FPUtil/dyadic_float.h" #include "src/__support/FPUtil/multiply_add.h" #include "src/__support/integer_literals.h" #include "src/__support/macros/config.h" namespace LIBC_NAMESPACE_DECL { namespace generic { using fputil::DoubleDouble; using Float128 = fputil::DyadicFloat<128>; LIBC_INLINE double sincos_eval(const DoubleDouble &u, DoubleDouble &sin_u, DoubleDouble &cos_u) { // Evaluate sin(y) = sin(x - k * (pi/128)) // We use the degree-7 Taylor approximation: // sin(y) ~ y - y^3/3! + y^5/5! - y^7/7! // Then the error is bounded by: // |sin(y) - (y - y^3/3! + y^5/5! - y^7/7!)| < |y|^9/9! < 2^-54/9! < 2^-72. // For y ~ u_hi + u_lo, fully expanding the polynomial and drop any terms // < ulp(u_hi^3) gives us: // y - y^3/3! + y^5/5! - y^7/7! = ... // ~ u_hi + u_hi^3 * (-1/6 + u_hi^2 * (1/120 - u_hi^2 * 1/5040)) + // + u_lo (1 + u_hi^2 * (-1/2 + u_hi^2 / 24)) double u_hi_sq = u.hi * u.hi; // Error < ulp(u_hi^2) < 2^(-6 - 52) = 2^-58. // p1 ~ 1/120 + u_hi^2 / 5040. double p1 = fputil::multiply_add(u_hi_sq, -0x1.a01a01a01a01ap-13, 0x1.1111111111111p-7); // q1 ~ -1/2 + u_hi^2 / 24. double q1 = fputil::multiply_add(u_hi_sq, 0x1.5555555555555p-5, -0x1.0p-1); double u_hi_3 = u_hi_sq * u.hi; // p2 ~ -1/6 + u_hi^2 (1/120 - u_hi^2 * 1/5040) double p2 = fputil::multiply_add(u_hi_sq, p1, -0x1.5555555555555p-3); // q2 ~ 1 + u_hi^2 (-1/2 + u_hi^2 / 24) double q2 = fputil::multiply_add(u_hi_sq, q1, 1.0); double sin_lo = fputil::multiply_add(u_hi_3, p2, u.lo * q2); // Overall, |sin(y) - (u_hi + sin_lo)| < 2*ulp(u_hi^3) < 2^-69. // Evaluate cos(y) = cos(x - k * (pi/128)) // We use the degree-8 Taylor approximation: // cos(y) ~ 1 - y^2/2 + y^4/4! - y^6/6! + y^8/8! // Then the error is bounded by: // |cos(y) - (...)| < |y|^10/10! < 2^-81 // For y ~ u_hi + u_lo, fully expanding the polynomial and drop any terms // < ulp(u_hi^3) gives us: // 1 - y^2/2 + y^4/4! - y^6/6! + y^8/8! = ... // ~ 1 - u_hi^2/2 + u_hi^4(1/24 + u_hi^2 (-1/720 + u_hi^2/40320)) + // + u_hi u_lo (-1 + u_hi^2/6) // We compute 1 - u_hi^2 accurately: // v_hi + v_lo ~ 1 - u_hi^2/2 // with error <= 2^-105. double u_hi_neg_half = (-0.5) * u.hi; DoubleDouble v; #ifdef LIBC_TARGET_CPU_HAS_FMA v.hi = fputil::multiply_add(u.hi, u_hi_neg_half, 1.0); v.lo = 1.0 - v.hi; // Exact v.lo = fputil::multiply_add(u.hi, u_hi_neg_half, v.lo); #else DoubleDouble u_hi_sq_neg_half = fputil::exact_mult(u.hi, u_hi_neg_half); v = fputil::exact_add(1.0, u_hi_sq_neg_half.hi); v.lo += u_hi_sq_neg_half.lo; #endif // LIBC_TARGET_CPU_HAS_FMA // r1 ~ -1/720 + u_hi^2 / 40320 double r1 = fputil::multiply_add(u_hi_sq, 0x1.a01a01a01a01ap-16, -0x1.6c16c16c16c17p-10); // s1 ~ -1 + u_hi^2 / 6 double s1 = fputil::multiply_add(u_hi_sq, 0x1.5555555555555p-3, -1.0); double u_hi_4 = u_hi_sq * u_hi_sq; double u_hi_u_lo = u.hi * u.lo; // r2 ~ 1/24 + u_hi^2 (-1/720 + u_hi^2 / 40320) double r2 = fputil::multiply_add(u_hi_sq, r1, 0x1.5555555555555p-5); // s2 ~ v_lo + u_hi * u_lo * (-1 + u_hi^2 / 6) double s2 = fputil::multiply_add(u_hi_u_lo, s1, v.lo); double cos_lo = fputil::multiply_add(u_hi_4, r2, s2); // Overall, |cos(y) - (v_hi + cos_lo)| < 2*ulp(u_hi^4) < 2^-75. sin_u = fputil::exact_add(u.hi, sin_lo); cos_u = fputil::exact_add(v.hi, cos_lo); return fputil::multiply_add(fputil::FPBits(u_hi_3).abs().get_val(), 0x1.0p-51, 0x1.0p-105); } LIBC_INLINE void sincos_eval(const Float128 &u, Float128 &sin_u, Float128 &cos_u) { Float128 u_sq = fputil::quick_mul(u, u); // sin(u) ~ x - x^3/3! + x^5/5! - x^7/7! + x^9/9! - x^11/11! + x^13/13! constexpr Float128 SIN_COEFFS[] = { {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1 {Sign::NEG, -130, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // -1/3! {Sign::POS, -134, 0x88888888'88888888'88888888'88888889_u128}, // 1/5! {Sign::NEG, -140, 0xd00d00d0'0d00d00d'00d00d00'd00d00d0_u128}, // -1/7! {Sign::POS, -146, 0xb8ef1d2a'b6399c7d'560e4472'800b8ef2_u128}, // 1/9! {Sign::NEG, -153, 0xd7322b3f'aa271c7f'3a3f25c1'bee38f10_u128}, // -1/11! {Sign::POS, -160, 0xb092309d'43684be5'1c198e91'd7b4269e_u128}, // 1/13! }; // cos(u) ~ 1 - x^2/2 + x^4/4! - x^6/6! + x^8/8! - x^10/10! + x^12/12! constexpr Float128 COS_COEFFS[] = { {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0 {Sign::NEG, -128, 0x80000000'00000000'00000000'00000000_u128}, // 1/2 {Sign::POS, -132, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1/4! {Sign::NEG, -137, 0xb60b60b6'0b60b60b'60b60b60'b60b60b6_u128}, // 1/6! {Sign::POS, -143, 0xd00d00d0'0d00d00d'00d00d00'd00d00d0_u128}, // 1/8! {Sign::NEG, -149, 0x93f27dbb'c4fae397'780b69f5'333c725b_u128}, // 1/10! {Sign::POS, -156, 0x8f76c77f'c6c4bdaa'26d4c3d6'7f425f60_u128}, // 1/12! }; sin_u = fputil::quick_mul(u, fputil::polyeval(u_sq, SIN_COEFFS[0], SIN_COEFFS[1], SIN_COEFFS[2], SIN_COEFFS[3], SIN_COEFFS[4], SIN_COEFFS[5], SIN_COEFFS[6])); cos_u = fputil::polyeval(u_sq, COS_COEFFS[0], COS_COEFFS[1], COS_COEFFS[2], COS_COEFFS[3], COS_COEFFS[4], COS_COEFFS[5], COS_COEFFS[6]); } } // namespace generic } // namespace LIBC_NAMESPACE_DECL #endif // LLVM_LIBC_SRC_MATH_GENERIC_SINCOSF_EVAL_H