//===-- Utilities for trigonometric functions with FMA ----------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_LIBC_SRC_MATH_GENERIC_RANGE_REDUCTION_FMA_H #define LLVM_LIBC_SRC_MATH_GENERIC_RANGE_REDUCTION_FMA_H #include "src/__support/FPUtil/FMA.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/nearest_integer.h" #include "src/__support/macros/config.h" namespace LIBC_NAMESPACE_DECL { namespace fma { static constexpr uint32_t FAST_PASS_BOUND = 0x5600'0000U; // 2^45 // Digits of 32/pi, generated by Sollya with: // > a0 = D(32/pi); // > a1 = D(32/pi - a0); // > a2 = D(32/pi - a0 - a1); // > a3 = D(32/pi - a0 - a1 - a2); static constexpr double THIRTYTWO_OVER_PI[5] = { 0x1.45f306dc9c883p+3, -0x1.6b01ec5417056p-51, -0x1.6447e493ad4cep-105, 0x1.e21c820ff28b2p-159, -0x1.508510ea79237p-214}; // Return k and y, where // k = round(x * 32 / pi) and y = (x * 32 / pi) - k. LIBC_INLINE int64_t small_range_reduction(double x, double &y) { double kd = fputil::nearest_integer(x * THIRTYTWO_OVER_PI[0]); y = fputil::fma(x, THIRTYTWO_OVER_PI[0], -kd); y = fputil::fma(x, THIRTYTWO_OVER_PI[1], y); return static_cast(kd); } // Return k and y, where // k = round(x * 32 / pi) and y = (x * 32 / pi) - k. // This is used for sinf, cosf, sincosf. LIBC_INLINE int64_t large_range_reduction(double x, int x_exp, double &y) { // 2^45 <= |x| < 2^99 if (x_exp < 99) { // - When x < 2^99, the full exact product of x * THIRTYTWO_OVER_PI[0] // contains at least one integral bit <= 2^5. // - When 2^45 <= |x| < 2^55, the lowest 6 unit bits are contained // in the last 12 bits of double(x * THIRTYTWO_OVER_PI[0]). // - When |x| >= 2^55, the LSB of double(x * THIRTYTWO_OVER_PI[0]) is at // least 2^6. fputil::FPBits prod_hi(x * THIRTYTWO_OVER_PI[0]); prod_hi.set_uintval(prod_hi.uintval() & ((x_exp < 55) ? (~0xfffULL) : (~0ULL))); // |x| < 2^55 double k_hi = fputil::nearest_integer(prod_hi.get_val()); double truncated_prod = fputil::fma(x, THIRTYTWO_OVER_PI[0], -k_hi); double prod_lo = fputil::fma(x, THIRTYTWO_OVER_PI[1], truncated_prod); double k_lo = fputil::nearest_integer(prod_lo); y = fputil::fma(x, THIRTYTWO_OVER_PI[1], truncated_prod - k_lo); y = fputil::fma(x, THIRTYTWO_OVER_PI[2], y); y = fputil::fma(x, THIRTYTWO_OVER_PI[3], y); return static_cast(k_lo); } // - When x >= 2^110, the full exact product of x * THIRTYTWO_OVER_PI[0] does // not contain any of the lowest 6 unit bits, so we can ignore it completely. // - When 2^99 <= |x| < 2^110, the lowest 6 unit bits are contained // in the last 12 bits of double(x * THIRTYTWO_OVER_PI[1]). // - When |x| >= 2^110, the LSB of double(x * THIRTYTWO_OVER_PI[1]) is at // least 64. fputil::FPBits prod_hi(x * THIRTYTWO_OVER_PI[1]); prod_hi.set_uintval(prod_hi.uintval() & ((x_exp < 110) ? (~0xfffULL) : (~0ULL))); // |x| < 2^110 double k_hi = fputil::nearest_integer(prod_hi.get_val()); double truncated_prod = fputil::fma(x, THIRTYTWO_OVER_PI[1], -k_hi); double prod_lo = fputil::fma(x, THIRTYTWO_OVER_PI[2], truncated_prod); double k_lo = fputil::nearest_integer(prod_lo); y = fputil::fma(x, THIRTYTWO_OVER_PI[2], truncated_prod - k_lo); y = fputil::fma(x, THIRTYTWO_OVER_PI[3], y); y = fputil::fma(x, THIRTYTWO_OVER_PI[4], y); return static_cast(k_lo); } } // namespace fma } // namespace LIBC_NAMESPACE_DECL #endif // LLVM_LIBC_SRC_MATH_GENERIC_RANGE_REDUCTION_FMA_H