//===-- Utilities for trigonometric functions -------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_LIBC_SRC_MATH_GENERIC_RANGE_REDUCTION_H #define LLVM_LIBC_SRC_MATH_GENERIC_RANGE_REDUCTION_H #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/multiply_add.h" #include "src/__support/FPUtil/nearest_integer.h" #include "src/__support/common.h" #include "src/__support/macros/config.h" namespace LIBC_NAMESPACE_DECL { namespace generic { static constexpr uint32_t FAST_PASS_BOUND = 0x4a80'0000U; // 2^22 static constexpr int N_ENTRIES = 8; // We choose to split bits of 32/pi into 28-bit precision pieces, so that the // product of x * THIRTYTWO_OVER_PI_28[i] is exact. // These are generated by Sollya with: // > a1 = D(round(32/pi, 28, RN)); a1; // > a2 = D(round(32/pi - a1, 28, RN)); a2; // > a3 = D(round(32/pi - a1 - a2, 28, RN)); a3; // > a4 = D(round(32/pi - a1 - a2 - a3, 28, RN)); a4; // ... static constexpr double THIRTYTWO_OVER_PI_28[N_ENTRIES] = { 0x1.45f306ep+3, -0x1.b1bbeaep-28, 0x1.3f84ebp-57, -0x1.7056592p-87, 0x1.c0db62ap-116, -0x1.4cd8778p-145, -0x1.bef806cp-174, 0x1.63abdecp-204}; // Exponents of the least significant bits of the corresponding entries in // THIRTYTWO_OVER_PI_28. static constexpr int THIRTYTWO_OVER_PI_28_LSB_EXP[N_ENTRIES] = { -24, -55, -81, -114, -143, -170, -200, -230}; // Return k and y, where // k = round(x * 16 / pi) and y = (x * 16 / pi) - k. LIBC_INLINE int64_t small_range_reduction(double x, double &y) { double prod = x * THIRTYTWO_OVER_PI_28[0]; double kd = fputil::nearest_integer(prod); y = prod - kd; y = fputil::multiply_add(x, THIRTYTWO_OVER_PI_28[1], y); y = fputil::multiply_add(x, THIRTYTWO_OVER_PI_28[2], y); return static_cast(kd); } // Return k and y, where // k = round(x * 32 / pi) and y = (x * 32 / pi) - k. // For large range, there are at most 2 parts of THIRTYTWO_OVER_PI_28 // contributing to the lowest 6 binary digits (k & 63). If the least // significant bit of x * the least significant bit of THIRTYTWO_OVER_PI_28[i] // >= 64, we can completely ignore THIRTYTWO_OVER_PI_28[i]. LIBC_INLINE int64_t large_range_reduction(double x, int x_exp, double &y) { int idx = 0; y = 0; int x_lsb_exp_m4 = x_exp - fputil::FPBits::FRACTION_LEN; // Skipping the first parts of 32/pi such that: // LSB of x * LSB of THIRTYTWO_OVER_PI_28[i] >= 32. while (x_lsb_exp_m4 + THIRTYTWO_OVER_PI_28_LSB_EXP[idx] > 5) ++idx; double prod_hi = x * THIRTYTWO_OVER_PI_28[idx]; // Get the integral part of x * THIRTYTWO_OVER_PI_28[idx] double k_hi = fputil::nearest_integer(prod_hi); // Get the fractional part of x * THIRTYTWO_OVER_PI_28[idx] double frac = prod_hi - k_hi; double prod_lo = fputil::multiply_add(x, THIRTYTWO_OVER_PI_28[idx + 1], frac); double k_lo = fputil::nearest_integer(prod_lo); // Now y is the fractional parts. y = prod_lo - k_lo; y = fputil::multiply_add(x, THIRTYTWO_OVER_PI_28[idx + 2], y); y = fputil::multiply_add(x, THIRTYTWO_OVER_PI_28[idx + 3], y); return static_cast(k_hi) + static_cast(k_lo); } } // namespace generic } // namespace LIBC_NAMESPACE_DECL #endif // LLVM_LIBC_SRC_MATH_GENERIC_RANGE_REDUCTION_H