//===-- Implementation of exp2m1f function --------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/math/exp2m1f.h" #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/PolyEval.h" #include "src/__support/FPUtil/except_value_utils.h" #include "src/__support/FPUtil/multiply_add.h" #include "src/__support/FPUtil/rounding_mode.h" #include "src/__support/common.h" #include "src/__support/macros/config.h" #include "src/__support/macros/optimization.h" #include "src/__support/macros/properties/cpu_features.h" #include "src/errno/libc_errno.h" #include "explogxf.h" namespace LIBC_NAMESPACE_DECL { static constexpr size_t N_EXCEPTS_LO = 8; static constexpr fputil::ExceptValues EXP2M1F_EXCEPTS_LO = {{ // (input, RZ output, RU offset, RD offset, RN offset) // x = 0x1.36dc8ep-36, exp2m1f(x) = 0x1.aef212p-37 (RZ) {0x2d9b'6e47U, 0x2d57'7909U, 1U, 0U, 0U}, // x = 0x1.224936p-19, exp2m1f(x) = 0x1.926c0ep-20 (RZ) {0x3611'249bU, 0x35c9'3607U, 1U, 0U, 1U}, // x = 0x1.d16d2p-20, exp2m1f(x) = 0x1.429becp-20 (RZ) {0x35e8'b690U, 0x35a1'4df6U, 1U, 0U, 1U}, // x = 0x1.17949ep-14, exp2m1f(x) = 0x1.8397p-15 (RZ) {0x388b'ca4fU, 0x3841'cb80U, 1U, 0U, 1U}, // x = -0x1.9c3e1ep-38, exp2m1f(x) = -0x1.1dbeacp-38 (RZ) {0xacce'1f0fU, 0xac8e'df56U, 0U, 1U, 0U}, // x = -0x1.4d89b4p-32, exp2m1f(x) = -0x1.ce61b6p-33 (RZ) {0xafa6'c4daU, 0xaf67'30dbU, 0U, 1U, 1U}, // x = -0x1.a6eac4p-10, exp2m1f(x) = -0x1.24fadap-10 (RZ) {0xbad3'7562U, 0xba92'7d6dU, 0U, 1U, 1U}, // x = -0x1.e7526ep-6, exp2m1f(x) = -0x1.4e53dep-6 (RZ) {0xbcf3'a937U, 0xbca7'29efU, 0U, 1U, 1U}, }}; static constexpr size_t N_EXCEPTS_HI = 3; static constexpr fputil::ExceptValues EXP2M1F_EXCEPTS_HI = {{ // (input, RZ output, RU offset, RD offset, RN offset) // x = 0x1.16a972p-1, exp2m1f(x) = 0x1.d545b2p-2 (RZ) {0x3f0b'54b9U, 0x3eea'a2d9U, 1U, 0U, 0U}, // x = -0x1.9f12acp-5, exp2m1f(x) = -0x1.1ab68cp-5 (RZ) {0xbd4f'8956U, 0xbd0d'5b46U, 0U, 1U, 0U}, // x = -0x1.de7b9cp-5, exp2m1f(x) = -0x1.4508f4p-5 (RZ) {0xbd6f'3dceU, 0xbd22'847aU, 0U, 1U, 1U}, }}; LLVM_LIBC_FUNCTION(float, exp2m1f, (float x)) { using FPBits = fputil::FPBits; FPBits xbits(x); uint32_t x_u = xbits.uintval(); uint32_t x_abs = x_u & 0x7fff'ffffU; // When |x| >= 128, or x is nan, or |x| <= 2^-5 if (LIBC_UNLIKELY(x_abs >= 0x4300'0000U || x_abs <= 0x3d00'0000U)) { // |x| <= 2^-5 if (x_abs <= 0x3d00'0000U) { if (auto r = EXP2M1F_EXCEPTS_LO.lookup(x_u); LIBC_UNLIKELY(r.has_value())) return r.value(); // Minimax polynomial generated by Sollya with: // > display = hexadecimal; // > fpminimax((2^x - 1)/x, 5, [|D...|], [-2^-5, 2^-5]); constexpr double COEFFS[] = { 0x1.62e42fefa39f3p-1, 0x1.ebfbdff82c57bp-3, 0x1.c6b08d6f2d7aap-5, 0x1.3b2ab6fc92f5dp-7, 0x1.5d897cfe27125p-10, 0x1.43090e61e6af1p-13}; double xd = x; double xsq = xd * xd; double c0 = fputil::multiply_add(xd, COEFFS[1], COEFFS[0]); double c1 = fputil::multiply_add(xd, COEFFS[3], COEFFS[2]); double c2 = fputil::multiply_add(xd, COEFFS[5], COEFFS[4]); double p = fputil::polyeval(xsq, c0, c1, c2); return static_cast(p * xd); } // x >= 128, or x is nan if (xbits.is_pos()) { if (xbits.is_finite()) { int rounding = fputil::quick_get_round(); if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO) return FPBits::max_normal().get_val(); fputil::set_errno_if_required(ERANGE); fputil::raise_except_if_required(FE_OVERFLOW); } // x >= 128 and 2^x - 1 rounds to +inf, or x is +inf or nan return x + FPBits::inf().get_val(); } } if (LIBC_UNLIKELY(x <= -25.0f)) { // 2^(-inf) - 1 = -1 if (xbits.is_inf()) return -1.0f; // 2^nan - 1 = nan if (xbits.is_nan()) return x; int rounding = fputil::quick_get_round(); if (rounding == FE_UPWARD || rounding == FE_TOWARDZERO) return -0x1.ffff'fep-1f; // -1.0f + 0x1.0p-24f fputil::set_errno_if_required(ERANGE); fputil::raise_except_if_required(FE_UNDERFLOW); return -1.0f; } if (auto r = EXP2M1F_EXCEPTS_HI.lookup(x_u); LIBC_UNLIKELY(r.has_value())) return r.value(); // For -25 < x < 128, to compute 2^x, we perform the following range // reduction: find hi, mid, lo such that: // x = hi + mid + lo, in which: // hi is an integer, // 0 <= mid * 2^5 < 32 is an integer, // -2^(-6) <= lo <= 2^(-6). // In particular, // hi + mid = round(x * 2^5) * 2^(-5). // Then, // 2^x = 2^(hi + mid + lo) = 2^hi * 2^mid * 2^lo. // 2^mid is stored in the lookup table of 32 elements. // 2^lo is computed using a degree-4 minimax polynomial generated by Sollya. // We perform 2^hi * 2^mid by simply add hi to the exponent field of 2^mid. // kf = (hi + mid) * 2^5 = round(x * 2^5) float kf; int k; #ifdef LIBC_TARGET_CPU_HAS_NEAREST_INT kf = fputil::nearest_integer(x * 32.0f); k = static_cast(kf); #else constexpr float HALF[2] = {0.5f, -0.5f}; k = static_cast(fputil::multiply_add(x, 32.0f, HALF[x < 0.0f])); kf = static_cast(k); #endif // LIBC_TARGET_CPU_HAS_NEAREST_INT // lo = x - (hi + mid) = x - kf * 2^(-5) double lo = fputil::multiply_add(-0x1.0p-5f, kf, x); // hi = floor(kf * 2^(-4)) // exp2_hi = shift hi to the exponent field of double precision. int64_t exp2_hi = static_cast(static_cast(k >> ExpBase::MID_BITS) << fputil::FPBits::FRACTION_LEN); // mh = 2^hi * 2^mid // mh_bits = bit field of mh int64_t mh_bits = ExpBase::EXP_2_MID[k & ExpBase::MID_MASK] + exp2_hi; double mh = fputil::FPBits(static_cast(mh_bits)).get_val(); // Degree-4 polynomial approximating (2^x - 1)/x generated by Sollya with: // > display = hexadecimal; // > fpminimax((2^x - 1)/x, 4, [|D...|], [-2^-6, 2^-6]); constexpr double COEFFS[5] = {0x1.62e42fefa39efp-1, 0x1.ebfbdff8131c4p-3, 0x1.c6b08d7061695p-5, 0x1.3b2b1bee74b2ap-7, 0x1.5d88091198529p-10}; double lo_sq = lo * lo; double c1 = fputil::multiply_add(lo, COEFFS[0], 1.0); double c2 = fputil::multiply_add(lo, COEFFS[2], COEFFS[1]); double c3 = fputil::multiply_add(lo, COEFFS[4], COEFFS[3]); double exp2_lo = fputil::polyeval(lo_sq, c1, c2, c3); // 2^x - 1 = 2^(hi + mid + lo) - 1 // = 2^(hi + mid) * 2^lo - 1 // ~ mh * (1 + lo * P(lo)) - 1 // = mh * exp2_lo - 1 return static_cast(fputil::multiply_add(exp2_lo, mh, -1.0)); } } // namespace LIBC_NAMESPACE_DECL