//===-- Single-precision 2^x function -------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_LIBC_SRC_MATH_GENERIC_EXP2F_IMPL_H #define LLVM_LIBC_SRC_MATH_GENERIC_EXP2F_IMPL_H #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/PolyEval.h" #include "src/__support/FPUtil/except_value_utils.h" #include "src/__support/FPUtil/multiply_add.h" #include "src/__support/FPUtil/nearest_integer.h" #include "src/__support/FPUtil/rounding_mode.h" #include "src/__support/common.h" #include "src/__support/macros/config.h" #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY #include "src/__support/macros/properties/cpu_features.h" #include "explogxf.h" namespace LIBC_NAMESPACE_DECL { namespace generic { LIBC_INLINE float exp2f(float x) { constexpr uint32_t EXVAL1 = 0x3b42'9d37U; constexpr uint32_t EXVAL2 = 0xbcf3'a937U; constexpr uint32_t EXVAL_MASK = EXVAL1 & EXVAL2; using FPBits = typename fputil::FPBits; FPBits xbits(x); uint32_t x_u = xbits.uintval(); uint32_t x_abs = x_u & 0x7fff'ffffU; // When |x| >= 128, or x is nan, or |x| <= 2^-5 if (LIBC_UNLIKELY(x_abs >= 0x4300'0000U || x_abs <= 0x3d00'0000U)) { // |x| <= 2^-5 if (x_abs <= 0x3d00'0000) { // |x| < 2^-25 if (LIBC_UNLIKELY(x_abs <= 0x3280'0000U)) { return 1.0f + x; } // Check exceptional values. if (LIBC_UNLIKELY((x_u & EXVAL_MASK) == EXVAL_MASK)) { if (LIBC_UNLIKELY(x_u == EXVAL1)) { // x = 0x1.853a6ep-9f return fputil::round_result_slightly_down(0x1.00870ap+0f); } else if (LIBC_UNLIKELY(x_u == EXVAL2)) { // x = -0x1.e7526ep-6f return fputil::round_result_slightly_down(0x1.f58d62p-1f); } } // Minimax polynomial generated by Sollya with: // > P = fpminimax((2^x - 1)/x, 5, [|D...|], [-2^-5, 2^-5]); constexpr double COEFFS[] = { 0x1.62e42fefa39f3p-1, 0x1.ebfbdff82c57bp-3, 0x1.c6b08d6f2d7aap-5, 0x1.3b2ab6fc92f5dp-7, 0x1.5d897cfe27125p-10, 0x1.43090e61e6af1p-13}; double xd = static_cast(x); double xsq = xd * xd; double c0 = fputil::multiply_add(xd, COEFFS[1], COEFFS[0]); double c1 = fputil::multiply_add(xd, COEFFS[3], COEFFS[2]); double c2 = fputil::multiply_add(xd, COEFFS[5], COEFFS[4]); double p = fputil::polyeval(xsq, c0, c1, c2); double r = fputil::multiply_add(p, xd, 1.0); return static_cast(r); } // x >= 128 if (xbits.is_pos()) { // x is finite if (x_u < 0x7f80'0000U) { int rounding = fputil::quick_get_round(); if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO) return FPBits::max_normal().get_val(); fputil::set_errno_if_required(ERANGE); fputil::raise_except_if_required(FE_OVERFLOW); } // x is +inf or nan return x + FPBits::inf().get_val(); } // x <= -150 if (x_u >= 0xc316'0000U) { // exp(-Inf) = 0 if (xbits.is_inf()) return 0.0f; // exp(nan) = nan if (xbits.is_nan()) return x; if (fputil::fenv_is_round_up()) return FPBits::min_subnormal().get_val(); if (x != 0.0f) { fputil::set_errno_if_required(ERANGE); fputil::raise_except_if_required(FE_UNDERFLOW); } return 0.0f; } } // For -150 < x < 128, to compute 2^x, we perform the following range // reduction: find hi, mid, lo such that: // x = hi + mid + lo, in which // hi is an integer, // 0 <= mid * 2^5 < 32 is an integer // -2^(-6) <= lo <= 2^-6. // In particular, // hi + mid = round(x * 2^5) * 2^(-5). // Then, // 2^x = 2^(hi + mid + lo) = 2^hi * 2^mid * 2^lo. // 2^mid is stored in the lookup table of 32 elements. // 2^lo is computed using a degree-5 minimax polynomial // generated by Sollya. // We perform 2^hi * 2^mid by simply add hi to the exponent field // of 2^mid. // kf = (hi + mid) * 2^5 = round(x * 2^5) float kf; int k; #ifdef LIBC_TARGET_CPU_HAS_NEAREST_INT kf = fputil::nearest_integer(x * 32.0f); k = static_cast(kf); #else constexpr float HALF[2] = {0.5f, -0.5f}; k = static_cast(fputil::multiply_add(x, 32.0f, HALF[x < 0.0f])); kf = static_cast(k); #endif // LIBC_TARGET_CPU_HAS_NEAREST_INT // dx = lo = x - (hi + mid) = x - kf * 2^(-5) double dx = fputil::multiply_add(-0x1.0p-5f, kf, x); // hi = floor(kf * 2^(-4)) // exp_hi = shift hi to the exponent field of double precision. int64_t exp_hi = static_cast(static_cast(k >> ExpBase::MID_BITS) << fputil::FPBits::FRACTION_LEN); // mh = 2^hi * 2^mid // mh_bits = bit field of mh int64_t mh_bits = ExpBase::EXP_2_MID[k & ExpBase::MID_MASK] + exp_hi; double mh = fputil::FPBits(uint64_t(mh_bits)).get_val(); // Degree-5 polynomial approximating (2^x - 1)/x generating by Sollya with: // > P = fpminimax((2^x - 1)/x, 5, [|D...|], [-1/32. 1/32]); constexpr double COEFFS[5] = {0x1.62e42fefa39efp-1, 0x1.ebfbdff8131c4p-3, 0x1.c6b08d7061695p-5, 0x1.3b2b1bee74b2ap-7, 0x1.5d88091198529p-10}; double dx_sq = dx * dx; double c1 = fputil::multiply_add(dx, COEFFS[0], 1.0); double c2 = fputil::multiply_add(dx, COEFFS[2], COEFFS[1]); double c3 = fputil::multiply_add(dx, COEFFS[4], COEFFS[3]); double p = fputil::multiply_add(dx_sq, c3, c2); // 2^x = 2^(hi + mid + lo) // = 2^(hi + mid) * 2^lo // ~ mh * (1 + lo * P(lo)) // = mh + (mh*lo) * P(lo) return static_cast(fputil::multiply_add(p, dx_sq * mh, c1 * mh)); } } // namespace generic } // namespace LIBC_NAMESPACE_DECL #endif // LLVM_LIBC_SRC_MATH_GENERIC_EXP2F_IMPL_H