//===-- Single-precision cos function -------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/math/cosf.h" #include "sincosf_utils.h" #include "src/__support/FPUtil/BasicOperations.h" #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/except_value_utils.h" #include "src/__support/FPUtil/multiply_add.h" #include "src/__support/common.h" #include "src/__support/macros/config.h" #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA namespace LIBC_NAMESPACE_DECL { // Exceptional cases for cosf. static constexpr size_t N_EXCEPTS = 6; static constexpr fputil::ExceptValues COSF_EXCEPTS{{ // (inputs, RZ output, RU offset, RD offset, RN offset) // x = 0x1.64a032p43, cos(x) = 0x1.9d4ba4p-1 (RZ) {0x55325019, 0x3f4ea5d2, 1, 0, 0}, // x = 0x1.4555p51, cos(x) = 0x1.115d7cp-1 (RZ) {0x5922aa80, 0x3f08aebe, 1, 0, 1}, // x = 0x1.48a858p54, cos(x) = 0x1.f48148p-2 (RZ) {0x5aa4542c, 0x3efa40a4, 1, 0, 0}, // x = 0x1.3170fp63, cos(x) = 0x1.fe2976p-1 (RZ) {0x5f18b878, 0x3f7f14bb, 1, 0, 0}, // x = 0x1.2b9622p67, cos(x) = 0x1.f0285cp-1 (RZ) {0x6115cb11, 0x3f78142e, 1, 0, 1}, // x = 0x1.ddebdep120, cos(x) = 0x1.114438p-1 (RZ) {0x7beef5ef, 0x3f08a21c, 1, 0, 0}, }}; LLVM_LIBC_FUNCTION(float, cosf, (float x)) { using FPBits = typename fputil::FPBits; FPBits xbits(x); xbits.set_sign(Sign::POS); uint32_t x_abs = xbits.uintval(); double xd = static_cast(xbits.get_val()); // Range reduction: // For |x| > pi/16, we perform range reduction as follows: // Find k and y such that: // x = (k + y) * pi/32 // k is an integer // |y| < 0.5 // For small range (|x| < 2^45 when FMA instructions are available, 2^22 // otherwise), this is done by performing: // k = round(x * 32/pi) // y = x * 32/pi - k // For large range, we will omit all the higher parts of 16/pi such that the // least significant bits of their full products with x are larger than 63, // since cos((k + y + 64*i) * pi/32) = cos(x + i * 2pi) = cos(x). // // When FMA instructions are not available, we store the digits of 32/pi in // chunks of 28-bit precision. This will make sure that the products: // x * THIRTYTWO_OVER_PI_28[i] are all exact. // When FMA instructions are available, we simply store the digits of 32/pi in // chunks of doubles (53-bit of precision). // So when multiplying by the largest values of single precision, the // resulting output should be correct up to 2^(-208 + 128) ~ 2^-80. By the // worst-case analysis of range reduction, |y| >= 2^-38, so this should give // us more than 40 bits of accuracy. For the worst-case estimation of range // reduction, see for instances: // Elementary Functions by J-M. Muller, Chapter 11, // Handbook of Floating-Point Arithmetic by J-M. Muller et. al., // Chapter 10.2. // // Once k and y are computed, we then deduce the answer by the cosine of sum // formula: // cos(x) = cos((k + y)*pi/32) // = cos(y*pi/32) * cos(k*pi/32) - sin(y*pi/32) * sin(k*pi/32) // The values of sin(k*pi/32) and cos(k*pi/32) for k = 0..63 are precomputed // and stored using a vector of 32 doubles. Sin(y*pi/32) and cos(y*pi/32) are // computed using degree-7 and degree-6 minimax polynomials generated by // Sollya respectively. // |x| < 0x1.0p-12f if (LIBC_UNLIKELY(x_abs < 0x3980'0000U)) { // When |x| < 2^-12, the relative error of the approximation cos(x) ~ 1 // is: // |cos(x) - 1| < |x^2 / 2| = 2^-25 < epsilon(1)/2. // So the correctly rounded values of cos(x) are: // = 1 - eps(x) if rounding mode = FE_TOWARDZERO or FE_DOWWARD, // = 1 otherwise. // To simplify the rounding decision and make it more efficient and to // prevent compiler to perform constant folding, we use // fma(x, -2^-25, 1) instead. // Note: to use the formula 1 - 2^-25*x to decide the correct rounding, we // do need fma(x, -2^-25, 1) to prevent underflow caused by -2^-25*x when // |x| < 2^-125. For targets without FMA instructions, we simply use // double for intermediate results as it is more efficient than using an // emulated version of FMA. #if defined(LIBC_TARGET_CPU_HAS_FMA) return fputil::multiply_add(xbits.get_val(), -0x1.0p-25f, 1.0f); #else return static_cast(fputil::multiply_add(xd, -0x1.0p-25, 1.0)); #endif // LIBC_TARGET_CPU_HAS_FMA } if (auto r = COSF_EXCEPTS.lookup(x_abs); LIBC_UNLIKELY(r.has_value())) return r.value(); // x is inf or nan. if (LIBC_UNLIKELY(x_abs >= 0x7f80'0000U)) { if (x_abs == 0x7f80'0000U) { fputil::set_errno_if_required(EDOM); fputil::raise_except_if_required(FE_INVALID); } return x + FPBits::quiet_nan().get_val(); } // Combine the results with the sine of sum formula: // cos(x) = cos((k + y)*pi/32) // = cos(y*pi/32) * cos(k*pi/32) - sin(y*pi/32) * sin(k*pi/32) // = cosm1_y * cos_k + sin_y * sin_k // = (cosm1_y * cos_k + cos_k) + sin_y * sin_k double sin_k, cos_k, sin_y, cosm1_y; sincosf_eval(xd, x_abs, sin_k, cos_k, sin_y, cosm1_y); return static_cast(fputil::multiply_add( sin_y, -sin_k, fputil::multiply_add(cosm1_y, cos_k, cos_k))); } } // namespace LIBC_NAMESPACE_DECL