//===-- Single-precision atan function ------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/math/atanf.h" #include "inv_trigf_utils.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/PolyEval.h" #include "src/__support/FPUtil/except_value_utils.h" #include "src/__support/FPUtil/multiply_add.h" #include "src/__support/FPUtil/nearest_integer.h" #include "src/__support/FPUtil/rounding_mode.h" #include "src/__support/macros/config.h" #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY namespace LIBC_NAMESPACE_DECL { LLVM_LIBC_FUNCTION(float, atanf, (float x)) { using FPBits = typename fputil::FPBits; constexpr double FINAL_SIGN[2] = {1.0, -1.0}; constexpr double SIGNED_PI_OVER_2[2] = {0x1.921fb54442d18p0, -0x1.921fb54442d18p0}; FPBits x_bits(x); Sign sign = x_bits.sign(); x_bits.set_sign(Sign::POS); uint32_t x_abs = x_bits.uintval(); // x is inf or nan, |x| < 2^-4 or |x|= > 16. if (LIBC_UNLIKELY(x_abs <= 0x3d80'0000U || x_abs >= 0x4180'0000U)) { double x_d = static_cast(x); double const_term = 0.0; if (LIBC_UNLIKELY(x_abs >= 0x4180'0000)) { // atan(+-Inf) = +-pi/2. if (x_bits.is_inf()) { volatile double sign_pi_over_2 = SIGNED_PI_OVER_2[sign.is_neg()]; return static_cast(sign_pi_over_2); } if (x_bits.is_nan()) return x; // x >= 16 x_d = -1.0 / x_d; const_term = SIGNED_PI_OVER_2[sign.is_neg()]; } // 0 <= x < 1/16; if (LIBC_UNLIKELY(x_bits.is_zero())) return x; // x <= 2^-12; if (LIBC_UNLIKELY(x_abs < 0x3980'0000)) { #if defined(LIBC_TARGET_CPU_HAS_FMA) return fputil::multiply_add(x, -0x1.0p-25f, x); #else double x_d = static_cast(x); return static_cast(fputil::multiply_add(x_d, -0x1.0p-25, x_d)); #endif // LIBC_TARGET_CPU_HAS_FMA } // Use Taylor polynomial: // atan(x) ~ x * (1 - x^2 / 3 + x^4 / 5 - x^6 / 7 + x^8 / 9 - x^10 / 11). constexpr double ATAN_TAYLOR[6] = { 0x1.0000000000000p+0, -0x1.5555555555555p-2, 0x1.999999999999ap-3, -0x1.2492492492492p-3, 0x1.c71c71c71c71cp-4, -0x1.745d1745d1746p-4, }; double x2 = x_d * x_d; double x4 = x2 * x2; double c0 = fputil::multiply_add(x2, ATAN_TAYLOR[1], ATAN_TAYLOR[0]); double c1 = fputil::multiply_add(x2, ATAN_TAYLOR[3], ATAN_TAYLOR[2]); double c2 = fputil::multiply_add(x2, ATAN_TAYLOR[5], ATAN_TAYLOR[4]); double p = fputil::polyeval(x4, c0, c1, c2); double r = fputil::multiply_add(x_d, p, const_term); return static_cast(r); } // Range reduction steps: // 1) atan(x) = sign(x) * atan(|x|) // 2) If |x| > 1, atan(|x|) = pi/2 - atan(1/|x|) // 3) For 1/16 < x <= 1, we find k such that: |x - k/16| <= 1/32. // 4) Then we use polynomial approximation: // atan(x) ~ atan((k/16) + (x - (k/16)) * Q(x - k/16) // = P(x - k/16) double x_d, const_term, final_sign; int idx; if (x_abs > 0x3f80'0000U) { // |x| > 1, we need to invert x, so we will perform range reduction in // double precision. x_d = 1.0 / static_cast(x_bits.get_val()); double k_d = fputil::nearest_integer(x_d * 0x1.0p4); x_d = fputil::multiply_add(k_d, -0x1.0p-4, x_d); idx = static_cast(k_d); final_sign = FINAL_SIGN[sign.is_pos()]; // Adjust constant term of the polynomial by +- pi/2. const_term = fputil::multiply_add(final_sign, ATAN_COEFFS[idx][0], SIGNED_PI_OVER_2[sign.is_neg()]); } else { // Exceptional value: if (LIBC_UNLIKELY(x_abs == 0x3d8d'6b23U)) { // |x| = 0x1.1ad646p-4 return sign.is_pos() ? fputil::round_result_slightly_down(0x1.1a6386p-4f) : fputil::round_result_slightly_up(-0x1.1a6386p-4f); } // Perform range reduction in single precision. float x_f = x_bits.get_val(); float k_f = fputil::nearest_integer(x_f * 0x1.0p4f); x_f = fputil::multiply_add(k_f, -0x1.0p-4f, x_f); x_d = static_cast(x_f); idx = static_cast(k_f); final_sign = FINAL_SIGN[sign.is_neg()]; const_term = final_sign * ATAN_COEFFS[idx][0]; } double p = atan_eval(x_d, idx); double r = fputil::multiply_add(final_sign * x_d, p, const_term); return static_cast(r); } } // namespace LIBC_NAMESPACE_DECL