//===-- Single-precision asin function ------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/math/asinf.h" #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/PolyEval.h" #include "src/__support/FPUtil/except_value_utils.h" #include "src/__support/FPUtil/multiply_add.h" #include "src/__support/FPUtil/sqrt.h" #include "src/__support/macros/config.h" #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA #include "inv_trigf_utils.h" namespace LIBC_NAMESPACE_DECL { static constexpr size_t N_EXCEPTS = 2; // Exceptional values when |x| <= 0.5 static constexpr fputil::ExceptValues ASINF_EXCEPTS_LO = {{ // (inputs, RZ output, RU offset, RD offset, RN offset) // x = 0x1.137f0cp-5, asinf(x) = 0x1.138c58p-5 (RZ) {0x3d09bf86, 0x3d09c62c, 1, 0, 1}, // x = 0x1.cbf43cp-4, asinf(x) = 0x1.cced1cp-4 (RZ) {0x3de5fa1e, 0x3de6768e, 1, 0, 0}, }}; // Exceptional values when 0.5 < |x| <= 1 static constexpr fputil::ExceptValues ASINF_EXCEPTS_HI = {{ // (inputs, RZ output, RU offset, RD offset, RN offset) // x = 0x1.107434p-1, asinf(x) = 0x1.1f4b64p-1 (RZ) {0x3f083a1a, 0x3f0fa5b2, 1, 0, 0}, // x = 0x1.ee836cp-1, asinf(x) = 0x1.4f0654p0 (RZ) {0x3f7741b6, 0x3fa7832a, 1, 0, 0}, }}; LLVM_LIBC_FUNCTION(float, asinf, (float x)) { using FPBits = typename fputil::FPBits; FPBits xbits(x); uint32_t x_uint = xbits.uintval(); uint32_t x_abs = xbits.uintval() & 0x7fff'ffffU; constexpr double SIGN[2] = {1.0, -1.0}; uint32_t x_sign = x_uint >> 31; // |x| <= 0.5-ish if (x_abs < 0x3f04'471dU) { // |x| < 0x1.d12edp-12 if (LIBC_UNLIKELY(x_abs < 0x39e8'9768U)) { // When |x| < 2^-12, the relative error of the approximation asin(x) ~ x // is: // |asin(x) - x| / |asin(x)| < |x^3| / (6|x|) // = x^2 / 6 // < 2^-25 // < epsilon(1)/2. // So the correctly rounded values of asin(x) are: // = x + sign(x)*eps(x) if rounding mode = FE_TOWARDZERO, // or (rounding mode = FE_UPWARD and x is // negative), // = x otherwise. // To simplify the rounding decision and make it more efficient, we use // fma(x, 2^-25, x) instead. // An exhaustive test shows that this formula work correctly for all // rounding modes up to |x| < 0x1.d12edp-12. // Note: to use the formula x + 2^-25*x to decide the correct rounding, we // do need fma(x, 2^-25, x) to prevent underflow caused by 2^-25*x when // |x| < 2^-125. For targets without FMA instructions, we simply use // double for intermediate results as it is more efficient than using an // emulated version of FMA. #if defined(LIBC_TARGET_CPU_HAS_FMA) return fputil::multiply_add(x, 0x1.0p-25f, x); #else double xd = static_cast(x); return static_cast(fputil::multiply_add(xd, 0x1.0p-25, xd)); #endif // LIBC_TARGET_CPU_HAS_FMA } // Check for exceptional values if (auto r = ASINF_EXCEPTS_LO.lookup_odd(x_abs, x_sign); LIBC_UNLIKELY(r.has_value())) return r.value(); // For |x| <= 0.5, we approximate asinf(x) by: // asin(x) = x * P(x^2) // Where P(X^2) = Q(X) is a degree-20 minimax even polynomial approximating // asin(x)/x on [0, 0.5] generated by Sollya with: // > Q = fpminimax(asin(x)/x, [|0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20|], // [|1, D...|], [0, 0.5]); // An exhaustive test shows that this approximation works well up to a // little more than 0.5. double xd = static_cast(x); double xsq = xd * xd; double x3 = xd * xsq; double r = asin_eval(xsq); return static_cast(fputil::multiply_add(x3, r, xd)); } // |x| > 1, return NaNs. if (LIBC_UNLIKELY(x_abs > 0x3f80'0000U)) { if (x_abs <= 0x7f80'0000U) { fputil::set_errno_if_required(EDOM); fputil::raise_except_if_required(FE_INVALID); } return FPBits::quiet_nan().get_val(); } // Check for exceptional values if (auto r = ASINF_EXCEPTS_HI.lookup_odd(x_abs, x_sign); LIBC_UNLIKELY(r.has_value())) return r.value(); // When |x| > 0.5, we perform range reduction as follow: // // Assume further that 0.5 < x <= 1, and let: // y = asin(x) // We will use the double angle formula: // cos(2y) = 1 - 2 sin^2(y) // and the complement angle identity: // x = sin(y) = cos(pi/2 - y) // = 1 - 2 sin^2 (pi/4 - y/2) // So: // sin(pi/4 - y/2) = sqrt( (1 - x)/2 ) // And hence: // pi/4 - y/2 = asin( sqrt( (1 - x)/2 ) ) // Equivalently: // asin(x) = y = pi/2 - 2 * asin( sqrt( (1 - x)/2 ) ) // Let u = (1 - x)/2, then: // asin(x) = pi/2 - 2 * asin( sqrt(u) ) // Moreover, since 0.5 < x <= 1: // 0 <= u < 1/4, and 0 <= sqrt(u) < 0.5, // And hence we can reuse the same polynomial approximation of asin(x) when // |x| <= 0.5: // asin(x) ~ pi/2 - 2 * sqrt(u) * P(u), xbits.set_sign(Sign::POS); double sign = SIGN[x_sign]; double xd = static_cast(xbits.get_val()); double u = fputil::multiply_add(-0.5, xd, 0.5); double c1 = sign * (-2 * fputil::sqrt(u)); double c2 = fputil::multiply_add(sign, M_MATH_PI_2, c1); double c3 = c1 * u; double r = asin_eval(u); return static_cast(fputil::multiply_add(c3, r, c2)); } } // namespace LIBC_NAMESPACE_DECL