//===-- Resizable Monotonic HashTable ---------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_LIBC_SRC___SUPPORT_HASHTABLE_TABLE_H #define LLVM_LIBC_SRC___SUPPORT_HASHTABLE_TABLE_H #include "include/llvm-libc-types/ENTRY.h" #include "src/__support/CPP/bit.h" // bit_ceil #include "src/__support/CPP/new.h" #include "src/__support/HashTable/bitmask.h" #include "src/__support/hash.h" #include "src/__support/macros/attributes.h" #include "src/__support/macros/config.h" #include "src/__support/macros/optimization.h" #include "src/__support/memory_size.h" #include "src/string/memset.h" #include "src/string/strcmp.h" #include "src/string/strlen.h" #include #include namespace LIBC_NAMESPACE_DECL { namespace internal { LIBC_INLINE uint8_t secondary_hash(uint64_t hash) { // top 7 bits of the hash. return static_cast(hash >> 57); } // Probe sequence based on triangular numbers, which is guaranteed (since our // table size is a power of two) to visit every group of elements exactly once. // // A triangular probe has us jump by 1 more group every time. So first we // jump by 1 group (meaning we just continue our linear scan), then 2 groups // (skipping over 1 group), then 3 groups (skipping over 2 groups), and so on. // // If we set sizeof(Group) to be one unit: // T[k] = sum {1 + 2 + ... + k} = k * (k + 1) / 2 // It is provable that T[k] mod 2^m generates a permutation of // 0, 1, 2, 3, ..., 2^m - 2, 2^m - 1 // Detailed proof is available at: // https://fgiesen.wordpress.com/2015/02/22/triangular-numbers-mod-2n/ struct ProbeSequence { size_t position; size_t stride; size_t entries_mask; LIBC_INLINE size_t next() { position += stride; position &= entries_mask; stride += sizeof(Group); return position; } }; // The number of entries is at least group width: we do not // need to do the fixup when we set the control bytes. // The number of entries is at least 8: we don't have to worry // about special sizes when check the fullness of the table. LIBC_INLINE size_t capacity_to_entries(size_t cap) { if (8 >= sizeof(Group) && cap < 8) return 8; if (16 >= sizeof(Group) && cap < 15) return 16; if (cap < sizeof(Group)) cap = sizeof(Group); // overflow is always checked in allocate() return cpp::bit_ceil(cap * 8 / 7); } // The heap memory layout for N buckets HashTable is as follows: // // ======================= // | N * Entry | // ======================= <- align boundary // | Header | // ======================= <- align boundary (for fast resize) // | (N + 1) * Byte | // ======================= // // The trailing group part is to make sure we can always load // a whole group of control bytes. struct HashTable { HashState state; size_t entries_mask; // number of buckets - 1 size_t available_slots; // less than capacity private: // How many entries are there in the table. LIBC_INLINE size_t num_of_entries() const { return entries_mask + 1; } // How many entries can we store in the table before resizing. LIBC_INLINE size_t full_capacity() const { return num_of_entries() / 8 * 7; } // The alignment of the whole memory area is the maximum of the alignment // among the following types: // - HashTable // - ENTRY // - Group LIBC_INLINE constexpr static size_t table_alignment() { size_t left_align = alignof(HashTable) > alignof(ENTRY) ? alignof(HashTable) : alignof(ENTRY); return left_align > alignof(Group) ? left_align : alignof(Group); } LIBC_INLINE bool is_full() const { return available_slots == 0; } LIBC_INLINE size_t offset_from_entries() const { size_t entries_size = num_of_entries() * sizeof(ENTRY); return entries_size + SafeMemSize::offset_to(entries_size, table_alignment()); } LIBC_INLINE constexpr static size_t offset_to_groups() { size_t header_size = sizeof(HashTable); return header_size + SafeMemSize::offset_to(header_size, table_alignment()); } LIBC_INLINE ENTRY &entry(size_t i) { return reinterpret_cast(this)[-i - 1]; } LIBC_INLINE const ENTRY &entry(size_t i) const { return reinterpret_cast(this)[-i - 1]; } LIBC_INLINE uint8_t &control(size_t i) { uint8_t *ptr = reinterpret_cast(this) + offset_to_groups(); return ptr[i]; } LIBC_INLINE const uint8_t &control(size_t i) const { const uint8_t *ptr = reinterpret_cast(this) + offset_to_groups(); return ptr[i]; } // We duplicate a group of control bytes to the end. Thus, it is possible that // we need to set two control bytes at the same time. LIBC_INLINE void set_ctrl(size_t index, uint8_t value) { size_t index2 = ((index - sizeof(Group)) & entries_mask) + sizeof(Group); control(index) = value; control(index2) = value; } LIBC_INLINE size_t find(const char *key, uint64_t primary) { uint8_t secondary = secondary_hash(primary); ProbeSequence sequence{static_cast(primary), 0, entries_mask}; while (true) { size_t pos = sequence.next(); Group ctrls = Group::load(&control(pos)); IteratableBitMask masks = ctrls.match_byte(secondary); for (size_t i : masks) { size_t index = (pos + i) & entries_mask; ENTRY &entry = this->entry(index); if (LIBC_LIKELY(entry.key != nullptr && strcmp(entry.key, key) == 0)) return index; } BitMask available = ctrls.mask_available(); // Since there is no deletion, the first time we find an available slot // it is also ready to be used as an insertion point. Therefore, we also // return the first available slot we find. If such entry is empty, the // key will be nullptr. if (LIBC_LIKELY(available.any_bit_set())) { size_t index = (pos + available.lowest_set_bit_nonzero()) & entries_mask; return index; } } } LIBC_INLINE uint64_t oneshot_hash(const char *key) const { LIBC_NAMESPACE::internal::HashState hasher = state; hasher.update(key, strlen(key)); return hasher.finish(); } // A fast insertion routine without checking if a key already exists. // Nor does the routine check if the table is full. // This is only to be used in grow() where we insert all existing entries // into a new table. Hence, the requirements are naturally satisfied. LIBC_INLINE ENTRY *unsafe_insert(ENTRY item) { uint64_t primary = oneshot_hash(item.key); uint8_t secondary = secondary_hash(primary); ProbeSequence sequence{static_cast(primary), 0, entries_mask}; while (true) { size_t pos = sequence.next(); Group ctrls = Group::load(&control(pos)); BitMask available = ctrls.mask_available(); if (available.any_bit_set()) { size_t index = (pos + available.lowest_set_bit_nonzero()) & entries_mask; set_ctrl(index, secondary); entry(index).key = item.key; entry(index).data = item.data; available_slots--; return &entry(index); } } } LIBC_INLINE HashTable *grow() const { size_t hint = full_capacity() + 1; HashState state = this->state; // migrate to a new random state state.update(&hint, sizeof(hint)); HashTable *new_table = allocate(hint, state.finish()); // It is safe to call unsafe_insert() because we know that: // - the new table has enough capacity to hold all the entries // - there is no duplicate key in the old table if (new_table != nullptr) for (ENTRY e : *this) new_table->unsafe_insert(e); return new_table; } LIBC_INLINE static ENTRY *insert(HashTable *&table, ENTRY item, uint64_t primary) { auto index = table->find(item.key, primary); auto slot = &table->entry(index); // SVr4 and POSIX.1-2001 specify that action is significant only for // unsuccessful searches, so that an ENTER should not do anything // for a successful search. if (slot->key != nullptr) return slot; // if table of full, we try to grow the table if (table->is_full()) { HashTable *new_table = table->grow(); // allocation failed, return nullptr to indicate failure if (new_table == nullptr) return nullptr; // resized sccuessfully: clean up the old table and use the new one deallocate(table); table = new_table; // it is still valid to use the fastpath insertion. return table->unsafe_insert(item); } table->set_ctrl(index, secondary_hash(primary)); slot->key = item.key; slot->data = item.data; table->available_slots--; return slot; } public: LIBC_INLINE static void deallocate(HashTable *table) { if (table) { void *ptr = reinterpret_cast(table) - table->offset_from_entries(); operator delete(ptr, std::align_val_t{table_alignment()}); } } LIBC_INLINE static HashTable *allocate(size_t capacity, uint64_t randomness) { // check if capacity_to_entries overflows MAX_MEM_SIZE if (capacity > size_t{1} << (8 * sizeof(size_t) - 1 - 3)) return nullptr; SafeMemSize entries{capacity_to_entries(capacity)}; SafeMemSize entries_size = entries * SafeMemSize{sizeof(ENTRY)}; SafeMemSize align_boundary = entries_size.align_up(table_alignment()); SafeMemSize ctrl_sizes = entries + SafeMemSize{sizeof(Group)}; SafeMemSize header_size{offset_to_groups()}; SafeMemSize total_size = (align_boundary + header_size + ctrl_sizes).align_up(table_alignment()); if (!total_size.valid()) return nullptr; AllocChecker ac; void *mem = operator new(total_size, std::align_val_t{table_alignment()}, ac); HashTable *table = reinterpret_cast( static_cast(mem) + align_boundary); if (ac) { table->entries_mask = entries - 1u; table->available_slots = entries / 8 * 7; table->state = HashState{randomness}; memset(&table->control(0), 0x80, ctrl_sizes); memset(mem, 0, table->offset_from_entries()); } return table; } struct FullTableIterator { size_t current_offset; size_t remaining; IteratableBitMask current_mask; const HashTable &table; // It is fine to use remaining to represent the iterator: // - this comparison only happens with the same table // - hashtable will not be mutated during the iteration LIBC_INLINE bool operator==(const FullTableIterator &other) const { return remaining == other.remaining; } LIBC_INLINE bool operator!=(const FullTableIterator &other) const { return remaining != other.remaining; } LIBC_INLINE FullTableIterator &operator++() { this->ensure_valid_group(); current_mask.remove_lowest_bit(); remaining--; return *this; } LIBC_INLINE const ENTRY &operator*() { this->ensure_valid_group(); return table.entry( (current_offset + current_mask.lowest_set_bit_nonzero()) & table.entries_mask); } private: LIBC_INLINE void ensure_valid_group() { while (!current_mask.any_bit_set()) { current_offset += sizeof(Group); // It is ensured that the load will only happen at aligned boundaries. current_mask = Group::load_aligned(&table.control(current_offset)).occupied(); } } }; using value_type = ENTRY; using iterator = FullTableIterator; iterator begin() const { return {0, full_capacity() - available_slots, Group::load_aligned(&control(0)).occupied(), *this}; } iterator end() const { return {0, 0, {BitMask{0}}, *this}; } LIBC_INLINE ENTRY *find(const char *key) { uint64_t primary = oneshot_hash(key); ENTRY &entry = this->entry(find(key, primary)); if (entry.key == nullptr) return nullptr; return &entry; } LIBC_INLINE static ENTRY *insert(HashTable *&table, ENTRY item) { uint64_t primary = table->oneshot_hash(item.key); return insert(table, item, primary); } }; } // namespace internal } // namespace LIBC_NAMESPACE_DECL #endif // LLVM_LIBC_SRC___SUPPORT_HASHTABLE_TABLE_H