//===-- Nearest integer floating-point operations ---------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_NEARESTINTEGEROPERATIONS_H #define LLVM_LIBC_SRC___SUPPORT_FPUTIL_NEARESTINTEGEROPERATIONS_H #include "FEnvImpl.h" #include "FPBits.h" #include "rounding_mode.h" #include "hdr/math_macros.h" #include "src/__support/CPP/type_traits.h" #include "src/__support/common.h" #include "src/__support/macros/config.h" namespace LIBC_NAMESPACE_DECL { namespace fputil { template , int> = 0> LIBC_INLINE T trunc(T x) { using StorageType = typename FPBits::StorageType; FPBits bits(x); // If x is infinity or NaN, return it. // If it is zero also we should return it as is, but the logic // later in this function takes care of it. But not doing a zero // check, we improve the run time of non-zero values. if (bits.is_inf_or_nan()) return x; int exponent = bits.get_exponent(); // If the exponent is greater than the most negative mantissa // exponent, then x is already an integer. if (exponent >= static_cast(FPBits::FRACTION_LEN)) return x; // If the exponent is such that abs(x) is less than 1, then return 0. if (exponent <= -1) return FPBits::zero(bits.sign()).get_val(); int trim_size = FPBits::FRACTION_LEN - exponent; StorageType trunc_mantissa = static_cast((bits.get_mantissa() >> trim_size) << trim_size); bits.set_mantissa(trunc_mantissa); return bits.get_val(); } template , int> = 0> LIBC_INLINE T ceil(T x) { using StorageType = typename FPBits::StorageType; FPBits bits(x); // If x is infinity NaN or zero, return it. if (bits.is_inf_or_nan() || bits.is_zero()) return x; bool is_neg = bits.is_neg(); int exponent = bits.get_exponent(); // If the exponent is greater than the most negative mantissa // exponent, then x is already an integer. if (exponent >= static_cast(FPBits::FRACTION_LEN)) return x; if (exponent <= -1) { if (is_neg) return T(-0.0); else return T(1.0); } uint32_t trim_size = FPBits::FRACTION_LEN - exponent; StorageType x_u = bits.uintval(); StorageType trunc_u = static_cast((x_u >> trim_size) << trim_size); // If x is already an integer, return it. if (trunc_u == x_u) return x; bits.set_uintval(trunc_u); T trunc_value = bits.get_val(); // If x is negative, the ceil operation is equivalent to the trunc operation. if (is_neg) return trunc_value; return trunc_value + T(1.0); } template , int> = 0> LIBC_INLINE T floor(T x) { FPBits bits(x); if (bits.is_neg()) { return -ceil(-x); } else { return trunc(x); } } template , int> = 0> LIBC_INLINE T round(T x) { using StorageType = typename FPBits::StorageType; FPBits bits(x); // If x is infinity NaN or zero, return it. if (bits.is_inf_or_nan() || bits.is_zero()) return x; int exponent = bits.get_exponent(); // If the exponent is greater than the most negative mantissa // exponent, then x is already an integer. if (exponent >= static_cast(FPBits::FRACTION_LEN)) return x; if (exponent == -1) { // Absolute value of x is greater than equal to 0.5 but less than 1. return FPBits::one(bits.sign()).get_val(); } if (exponent <= -2) { // Absolute value of x is less than 0.5. return FPBits::zero(bits.sign()).get_val(); } uint32_t trim_size = FPBits::FRACTION_LEN - exponent; bool half_bit_set = bool(bits.get_mantissa() & (StorageType(1) << (trim_size - 1))); StorageType x_u = bits.uintval(); StorageType trunc_u = static_cast((x_u >> trim_size) << trim_size); // If x is already an integer, return it. if (trunc_u == x_u) return x; bits.set_uintval(trunc_u); T trunc_value = bits.get_val(); if (!half_bit_set) { // Franctional part is less than 0.5 so round value is the // same as the trunc value. return trunc_value; } else { return bits.is_neg() ? trunc_value - T(1.0) : trunc_value + T(1.0); } } template LIBC_INLINE constexpr cpp::enable_if_t, T> round_using_specific_rounding_mode(T x, int rnd) { using StorageType = typename FPBits::StorageType; FPBits bits(x); // If x is infinity NaN or zero, return it. if (bits.is_inf_or_nan() || bits.is_zero()) return x; bool is_neg = bits.is_neg(); int exponent = bits.get_exponent(); // If the exponent is greater than the most negative mantissa // exponent, then x is already an integer. if (exponent >= static_cast(FPBits::FRACTION_LEN)) return x; if (exponent <= -1) { switch (rnd) { case FP_INT_DOWNWARD: return is_neg ? T(-1.0) : T(0.0); case FP_INT_UPWARD: return is_neg ? T(-0.0) : T(1.0); case FP_INT_TOWARDZERO: return is_neg ? T(-0.0) : T(0.0); case FP_INT_TONEARESTFROMZERO: if (exponent < -1) return is_neg ? T(-0.0) : T(0.0); // abs(x) < 0.5 return is_neg ? T(-1.0) : T(1.0); // abs(x) >= 0.5 case FP_INT_TONEAREST: default: if (exponent <= -2 || bits.get_mantissa() == 0) return is_neg ? T(-0.0) : T(0.0); // abs(x) <= 0.5 else return is_neg ? T(-1.0) : T(1.0); // abs(x) > 0.5 } } uint32_t trim_size = FPBits::FRACTION_LEN - exponent; StorageType x_u = bits.uintval(); StorageType trunc_u = static_cast((x_u >> trim_size) << trim_size); // If x is already an integer, return it. if (trunc_u == x_u) return x; FPBits new_bits(trunc_u); T trunc_value = new_bits.get_val(); StorageType trim_value = bits.get_mantissa() & static_cast(((StorageType(1) << trim_size) - 1)); StorageType half_value = static_cast((StorageType(1) << (trim_size - 1))); // If exponent is 0, trimSize will be equal to the mantissa width, and // truncIsOdd` will not be correct. So, we handle it as a special case // below. StorageType trunc_is_odd = new_bits.get_mantissa() & (StorageType(1) << trim_size); switch (rnd) { case FP_INT_DOWNWARD: return is_neg ? trunc_value - T(1.0) : trunc_value; case FP_INT_UPWARD: return is_neg ? trunc_value : trunc_value + T(1.0); case FP_INT_TOWARDZERO: return trunc_value; case FP_INT_TONEARESTFROMZERO: if (trim_value >= half_value) return is_neg ? trunc_value - T(1.0) : trunc_value + T(1.0); return trunc_value; case FP_INT_TONEAREST: default: if (trim_value > half_value) { return is_neg ? trunc_value - T(1.0) : trunc_value + T(1.0); } else if (trim_value == half_value) { if (exponent == 0) return is_neg ? T(-2.0) : T(2.0); if (trunc_is_odd) return is_neg ? trunc_value - T(1.0) : trunc_value + T(1.0); else return trunc_value; } else { return trunc_value; } } } template LIBC_INLINE cpp::enable_if_t, T> round_using_current_rounding_mode(T x) { int rounding_mode = quick_get_round(); switch (rounding_mode) { case FE_DOWNWARD: return round_using_specific_rounding_mode(x, FP_INT_DOWNWARD); case FE_UPWARD: return round_using_specific_rounding_mode(x, FP_INT_UPWARD); case FE_TOWARDZERO: return round_using_specific_rounding_mode(x, FP_INT_TOWARDZERO); case FE_TONEAREST: return round_using_specific_rounding_mode(x, FP_INT_TONEAREST); default: __builtin_unreachable(); } } template LIBC_INLINE constexpr cpp::enable_if_t, T> fromfp(T x, int rnd, unsigned int width) { using StorageType = typename FPBits::StorageType; constexpr StorageType EXPLICIT_BIT = FPBits::SIG_MASK - FPBits::FRACTION_MASK; if (width == 0U) { raise_except_if_required(FE_INVALID); return FPBits::quiet_nan().get_val(); } FPBits bits(x); if (bits.is_inf_or_nan()) { raise_except_if_required(FE_INVALID); return FPBits::quiet_nan().get_val(); } T rounded_value = round_using_specific_rounding_mode(x, rnd); if constexpr (IsSigned) { // T can't hold a finite number >= 2.0 * 2^EXP_BIAS. if (width - 1 > FPBits::EXP_BIAS) return rounded_value; StorageType range_exp = static_cast(width - 1 + FPBits::EXP_BIAS); // rounded_value < -2^(width - 1) T range_min = FPBits::create_value(Sign::NEG, range_exp, EXPLICIT_BIT).get_val(); if (rounded_value < range_min) { raise_except_if_required(FE_INVALID); return FPBits::quiet_nan().get_val(); } // rounded_value > 2^(width - 1) - 1 T range_max = FPBits::create_value(Sign::POS, range_exp, EXPLICIT_BIT).get_val() - T(1.0); if (rounded_value > range_max) { raise_except_if_required(FE_INVALID); return FPBits::quiet_nan().get_val(); } return rounded_value; } if (rounded_value < T(0.0)) { raise_except_if_required(FE_INVALID); return FPBits::quiet_nan().get_val(); } // T can't hold a finite number >= 2.0 * 2^EXP_BIAS. if (width > FPBits::EXP_BIAS) return rounded_value; StorageType range_exp = static_cast(width + FPBits::EXP_BIAS); // rounded_value > 2^width - 1 T range_max = FPBits::create_value(Sign::POS, range_exp, EXPLICIT_BIT).get_val() - T(1.0); if (rounded_value > range_max) { raise_except_if_required(FE_INVALID); return FPBits::quiet_nan().get_val(); } return rounded_value; } template LIBC_INLINE constexpr cpp::enable_if_t, T> fromfpx(T x, int rnd, unsigned int width) { T rounded_value = fromfp(x, rnd, width); FPBits bits(rounded_value); if (!bits.is_nan() && rounded_value != x) raise_except_if_required(FE_INEXACT); return rounded_value; } namespace internal { template && cpp::is_integral_v, int> = 0> LIBC_INLINE IntType rounded_float_to_signed_integer(FloatType x) { constexpr IntType INTEGER_MIN = (IntType(1) << (sizeof(IntType) * 8 - 1)); constexpr IntType INTEGER_MAX = -(INTEGER_MIN + 1); FPBits bits(x); auto set_domain_error_and_raise_invalid = []() { set_errno_if_required(EDOM); raise_except_if_required(FE_INVALID); }; if (bits.is_inf_or_nan()) { set_domain_error_and_raise_invalid(); return bits.is_neg() ? INTEGER_MIN : INTEGER_MAX; } int exponent = bits.get_exponent(); constexpr int EXPONENT_LIMIT = sizeof(IntType) * 8 - 1; if (exponent > EXPONENT_LIMIT) { set_domain_error_and_raise_invalid(); return bits.is_neg() ? INTEGER_MIN : INTEGER_MAX; } else if (exponent == EXPONENT_LIMIT) { if (bits.is_pos() || bits.get_mantissa() != 0) { set_domain_error_and_raise_invalid(); return bits.is_neg() ? INTEGER_MIN : INTEGER_MAX; } // If the control reaches here, then it means that the rounded // value is the most negative number for the signed integer type IntType. } // For all other cases, if `x` can fit in the integer type `IntType`, // we just return `x`. static_cast will convert the floating // point value to the exact integer value. return static_cast(x); } } // namespace internal template && cpp::is_integral_v, int> = 0> LIBC_INLINE IntType round_to_signed_integer(FloatType x) { return internal::rounded_float_to_signed_integer( round(x)); } template && cpp::is_integral_v, int> = 0> LIBC_INLINE IntType round_to_signed_integer_using_current_rounding_mode(FloatType x) { return internal::rounded_float_to_signed_integer( round_using_current_rounding_mode(x)); } } // namespace fputil } // namespace LIBC_NAMESPACE_DECL #endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_NEARESTINTEGEROPERATIONS_H