/* * Copyright (c) 2024, Alliance for Open Media. All rights reserved. * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "config/aom_config.h" #include "config/av1_rtcd.h" #include "aom/aom_integer.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/aom_filter.h" #include "aom_dsp/arm/aom_filter.h" #include "aom_dsp/arm/aom_neon_sve_bridge.h" #include "aom_dsp/arm/mem_neon.h" #include "aom_dsp/arm/transpose_neon.h" #include "aom_ports/mem.h" #include "av1/common/arm/highbd_convolve_sve2.h" #include "av1/common/arm/convolve_neon_i8mm.h" static inline int32x4_t highbd_convolve12_4_2d_v(int16x8_t s0[2], int16x8_t s1[2], int16x8_t s2[2], int16x8_t filter_0_7, int16x8_t filter_4_11) { int64x2_t sum01 = aom_svdot_lane_s16(vdupq_n_s64(0), s0[0], filter_0_7, 0); sum01 = aom_svdot_lane_s16(sum01, s1[0], filter_0_7, 1); sum01 = aom_svdot_lane_s16(sum01, s2[0], filter_4_11, 1); int64x2_t sum23 = aom_svdot_lane_s16(vdupq_n_s64(0), s0[1], filter_0_7, 0); sum23 = aom_svdot_lane_s16(sum23, s1[1], filter_0_7, 1); sum23 = aom_svdot_lane_s16(sum23, s2[1], filter_4_11, 1); return vcombine_s32(vmovn_s64(sum01), vmovn_s64(sum23)); } static inline void convolve_2d_sr_vert_12tap_sve2( const int16_t *src_ptr, int src_stride, uint8_t *dst_ptr, const int dst_stride, int w, int h, const int16x8_t y_filter_0_7, const int16x8_t y_filter_4_11) { // The no-op filter should never be used here. assert(vgetq_lane_s16(y_filter_0_7, 5) != 128); const int bd = 8; const int16x8_t sub_const = vdupq_n_s16(1 << (bd - 1)); uint16x8x3_t merge_block_tbl = vld1q_u16_x3(kDotProdMergeBlockTbl); // Scale indices by size of the true vector length to avoid reading from an // 'undefined' portion of a vector on a system with SVE vectors > 128-bit. uint16x8_t correction0 = vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000000000000ULL)); merge_block_tbl.val[0] = vaddq_u16(merge_block_tbl.val[0], correction0); uint16x8_t correction1 = vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100000000ULL)); merge_block_tbl.val[1] = vaddq_u16(merge_block_tbl.val[1], correction1); uint16x8_t correction2 = vreinterpretq_u16_u64(vdupq_n_u64(svcnth() * 0x0001000100010000ULL)); merge_block_tbl.val[2] = vaddq_u16(merge_block_tbl.val[2], correction2); do { int16_t *s = (int16_t *)src_ptr; uint8_t *d = (uint8_t *)dst_ptr; int height = h; int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, sA; load_s16_4x11(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7, &s8, &s9, &sA); s += 11 * src_stride; int16x8_t s0123[2], s1234[2], s2345[2], s3456[2], s4567[2], s5678[2], s6789[2], s789A[2]; // This operation combines a conventional transpose and the sample permute // required before computing the dot product. transpose_concat_4x4(s0, s1, s2, s3, s0123); transpose_concat_4x4(s1, s2, s3, s4, s1234); transpose_concat_4x4(s2, s3, s4, s5, s2345); transpose_concat_4x4(s3, s4, s5, s6, s3456); transpose_concat_4x4(s4, s5, s6, s7, s4567); transpose_concat_4x4(s5, s6, s7, s8, s5678); transpose_concat_4x4(s6, s7, s8, s9, s6789); transpose_concat_4x4(s7, s8, s9, sA, s789A); do { int16x4_t sB, sC, sD, sE; load_s16_4x4(s, src_stride, &sB, &sC, &sD, &sE); int16x8_t s89AB[2], s9ABC[2], sABCD[2], sBCDE[2]; transpose_concat_4x4(sB, sC, sD, sE, sBCDE); // Merge new data into block from previous iteration. aom_tbl2x2_s16(s789A, sBCDE, merge_block_tbl.val[0], s89AB); aom_tbl2x2_s16(s789A, sBCDE, merge_block_tbl.val[1], s9ABC); aom_tbl2x2_s16(s789A, sBCDE, merge_block_tbl.val[2], sABCD); int32x4_t d0 = highbd_convolve12_4_2d_v(s0123, s4567, s89AB, y_filter_0_7, y_filter_4_11); int32x4_t d1 = highbd_convolve12_4_2d_v(s1234, s5678, s9ABC, y_filter_0_7, y_filter_4_11); int32x4_t d2 = highbd_convolve12_4_2d_v(s2345, s6789, sABCD, y_filter_0_7, y_filter_4_11); int32x4_t d3 = highbd_convolve12_4_2d_v(s3456, s789A, sBCDE, y_filter_0_7, y_filter_4_11); int16x8_t dd01 = vcombine_s16(vqrshrn_n_s32(d0, 2 * FILTER_BITS - ROUND0_BITS), vqrshrn_n_s32(d1, 2 * FILTER_BITS - ROUND0_BITS)); int16x8_t dd23 = vcombine_s16(vqrshrn_n_s32(d2, 2 * FILTER_BITS - ROUND0_BITS), vqrshrn_n_s32(d3, 2 * FILTER_BITS - ROUND0_BITS)); dd01 = vsubq_s16(dd01, sub_const); dd23 = vsubq_s16(dd23, sub_const); uint8x8_t d01 = vqmovun_s16(dd01); uint8x8_t d23 = vqmovun_s16(dd23); store_u8x4_strided_x2(d + 0 * dst_stride, dst_stride, d01); store_u8x4_strided_x2(d + 2 * dst_stride, dst_stride, d23); // Prepare block for next iteration - re-using as much as possible. // Shuffle everything up four rows. s0123[0] = s4567[0]; s0123[1] = s4567[1]; s1234[0] = s5678[0]; s1234[1] = s5678[1]; s2345[0] = s6789[0]; s2345[1] = s6789[1]; s3456[0] = s789A[0]; s3456[1] = s789A[1]; s4567[0] = s89AB[0]; s4567[1] = s89AB[1]; s5678[0] = s9ABC[0]; s5678[1] = s9ABC[1]; s6789[0] = sABCD[0]; s6789[1] = sABCD[1]; s789A[0] = sBCDE[0]; s789A[1] = sBCDE[1]; s += 4 * src_stride; d += 4 * dst_stride; height -= 4; } while (height != 0); src_ptr += 4; dst_ptr += 4; w -= 4; } while (w != 0); } void av1_convolve_2d_sr_sve2(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_x, const InterpFilterParams *filter_params_y, const int subpel_x_qn, const int subpel_y_qn, ConvolveParams *conv_params) { if (w == 2 || h == 2) { av1_convolve_2d_sr_c(src, src_stride, dst, dst_stride, w, h, filter_params_x, filter_params_y, subpel_x_qn, subpel_y_qn, conv_params); return; } if (filter_params_x->taps > 8) { const int im_h = h + filter_params_y->taps - 1; const int im_stride = MAX_SB_SIZE; const int vert_offset = filter_params_x->taps / 2 - 1; const int horiz_offset = filter_params_x->taps / 2 - 1; const uint8_t *src_ptr = src - vert_offset * src_stride - horiz_offset; const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel( filter_params_x, subpel_x_qn & SUBPEL_MASK); const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel( filter_params_y, subpel_y_qn & SUBPEL_MASK); DECLARE_ALIGNED(16, int16_t, im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE]); const int16x8_t y_filter_0_7 = vld1q_s16(y_filter_ptr); const int16x8_t y_filter_4_11 = vld1q_s16(y_filter_ptr + 4); convolve_2d_sr_horiz_12tap_neon_i8mm(src_ptr, src_stride, im_block, im_stride, w, im_h, x_filter_ptr); convolve_2d_sr_vert_12tap_sve2(im_block, im_stride, dst, dst_stride, w, h, y_filter_0_7, y_filter_4_11); } else { av1_convolve_2d_sr_neon_i8mm(src, src_stride, dst, dst_stride, w, h, filter_params_x, filter_params_y, subpel_x_qn, subpel_y_qn, conv_params); } }