# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Provides the 'ExternalDataset' implementation of tf.Data.Dataset. This wraps the generated op (in external_dataset_py_wrapper). """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from fcp.tensorflow import gen_external_dataset_py _external_dataset_so = tf.load_op_library( tf.compat.v1.resource_loader.get_path_to_datafile( "./_external_dataset_op.so")) class ExternalDataset(tf.data.Dataset): """An ExternalDataset is defined by whomever is running the graph. To use an ExternalDataset, the graph must be fed a 'token' indicating what external dataset to use. It also takes a 'selector' input - an opaque string, to be interpreted by that external implementation. """ def __init__(self, token, selector): token = tf.convert_to_tensor(token, dtype=tf.string, name="token") selector = tf.convert_to_tensor(selector, dtype=tf.string, name="selector") variant_tensor = gen_external_dataset_py.ExternalDataset( token=token, selector=selector) super(ExternalDataset, self).__init__(variant_tensor) @property def element_spec(self): return tf.TensorSpec([], tf.string) def _inputs(self): return []