# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # pyre-strict import re import unittest import torch import torch.fx from executorch.exir.common import extract_out_arguments, get_schema_for_operators from executorch.exir.print_program import add_cursor_to_graph class TestExirCommon(unittest.TestCase): def test_get_schema_for_operators(self) -> None: op_list = [ "torch.ops._caffe2.RoIAlign.default", "torch.ops.aten.add.Tensor", "torch.ops.aten.batch_norm.default", "torch.ops.aten.cat.default", "torch.ops.aten.clamp.default", ] schemas = get_schema_for_operators(op_list) pat = re.compile(r"[^\(]+\([^\)]+\) -> ") for _op_name, schema in schemas.items(): self.assertIsNotNone(re.match(pat, schema)) def test_get_out_args(self) -> None: schema1 = torch._C.parse_schema( "aten::absolute.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)" ) schema2 = torch._C.parse_schema( "split_copy.Tensor_out(Tensor self, int split_size, int dim=0, *, Tensor(a!)[] out) -> ()" ) out_args_1 = extract_out_arguments(schema1, {"out": torch.ones(5)}) out_args_2 = extract_out_arguments( schema2, {"out": [torch.ones(5), torch.ones(5)]} ) out_arg_name_1, _ = out_args_1 self.assertEqual(out_arg_name_1, "out") out_arg_name_2, _ = out_args_2 self.assertEqual(out_arg_name_2, "out") def test_add_cursor(self) -> None: class MyModule(torch.nn.Module): def __init__(self): super().__init__() self.param = torch.nn.Parameter(torch.rand(3, 4)) self.linear = torch.nn.Linear(4, 5) def forward(self, x): return self.linear(x + self.param).clamp(min=0.0, max=1.0) module = MyModule() from torch.fx import symbolic_trace symbolic_traced = symbolic_trace(module) # Graph we are testing: # graph(): # %x : [#users=1] = placeholder[target=x] # %param : [#users=1] = get_attr[target=param] # %add : [#users=1] = call_function[target=operator.add](args = (%x, %param), kwargs = {}) # --> %linear : [#users=1] = call_module[target=linear](args = (%add,), kwargs = {}) # %clamp : [#users=1] = call_method[target=clamp](args = (%linear,), kwargs = {min: 0.0, max: 1.0}) # return clamp actual_str = add_cursor_to_graph( symbolic_traced.graph, list(symbolic_traced.graph.nodes)[3] ) self.assertTrue(actual_str.split("\n")[4].startswith("-->"))