# Copyright (c) Qualcomm Innovation Center, Inc. # All rights reserved # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import cast, Dict, List import executorch.backends.qualcomm.python.PyQnnWrapperAdaptor as PyQnnWrapper import numpy as np import torch from executorch.backends.qualcomm.utils.constants import QCOM_INSERTED_PERMUTE from .node_visitor import NodeVisitor, register_node_visitor from .qnn_constants import OpTranspose, QNN_OP_PACKAGE_NAME_QTI_AISW @register_node_visitor class TransposeVisitor(NodeVisitor): target = ["aten.permute_copy.default"] def __init__(self, *args) -> None: super().__init__(*args) def define_node( self, node: torch.fx.Node, nodes_to_wrappers: Dict[torch.fx.Node, PyQnnWrapper.TensorWrapper], ) -> PyQnnWrapper.PyQnnOpWrapper: input_node = node.args[0] permute_node = input_node if QCOM_INSERTED_PERMUTE in node.meta else node input_tensor = self.get_tensor(input_node, permute_node) input_tensor_wrapper = self.define_tensor( input_node, input_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=True, ) # permutation permute_order = cast(List[int], node.args[1]) permute_order_shape = [len(permute_order)] output_tensor = input_tensor.permute(permute_order) output_tensor_wrapper = self.define_tensor( node, output_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=False, ) transpose_op = PyQnnWrapper.PyQnnOpWrapper( node.name, QNN_OP_PACKAGE_NAME_QTI_AISW, OpTranspose.op_name, ) # add input/output tensors transpose_op.AddInputTensors([input_tensor_wrapper]) transpose_op.AddOutputTensors([output_tensor_wrapper]) transpose_op.AddTensorParam( OpTranspose.param_perm, PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_UINT_32, len(permute_order_shape), permute_order_shape, np.array(permute_order, dtype=np.uint32), True, ) return transpose_op