# Copyright (c) Qualcomm Innovation Center, Inc. # All rights reserved # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import warnings from typing import cast, Dict import executorch.backends.qualcomm.python.PyQnnWrapperAdaptor as PyQnnWrapper import numpy as np import torch from executorch.backends.qualcomm.utils.constants import QCOM_AXIS_ORDER, QCOM_DATA from .node_visitor import NodeVisitor, register_node_visitor from .qnn_constants import OpTopK, QNN_OP_PACKAGE_NAME_QTI_AISW @register_node_visitor class TopK(NodeVisitor): target = ["aten.topk.default"] def __init__(self, *args) -> None: super().__init__(*args) def define_node( self, node: torch.fx.Node, nodes_to_wrappers: Dict[torch.fx.Node, PyQnnWrapper.TensorWrapper], ) -> PyQnnWrapper.PyQnnOpWrapper: input_node = node.args[0] input_tensor = self.get_tensor(input_node, node) input_tensor_wrapper = self.define_tensor( input_node, input_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_STATIC, nodes_to_wrappers, is_input_tensor=True, ) k = cast(int, node.args[1]) if len(node.args) > 2: dim = cast(int, node.args[2]) if dim < 0: dim = dim % len(input_tensor.shape) if QCOM_AXIS_ORDER in node.meta: dim = node.meta[QCOM_AXIS_ORDER].index(dim) if dim != len(input_tensor.shape) - 1: warnings.warn( "[QNN Delegate Op Builder]: QNN currently only supports channel as dimension for topK.", stacklevel=1, ) return topk_input_tensors = [input_tensor_wrapper] output_val_tensor = self.get_tensor(node, node, 0) output_idx_tensor = self.get_tensor(node, node, 1).to(torch.int32) # QNN constraint, topk output_0 requires having the same quant config as input node.meta["quant_attrs"] = input_node.meta.get("quant_attrs") output_val_tensor_wrapper = self.define_tensor( node, output_val_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=False, ) # topk output_1 is index, do not quantize it. node.meta.pop("quant_attrs", None) output_index_tensor_wrapper = self.define_tensor( node, output_idx_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=False, wrapper_idx=1, ) topk_output_tensors = [output_val_tensor_wrapper, output_index_tensor_wrapper] topk_op = PyQnnWrapper.PyQnnOpWrapper( node.name, QNN_OP_PACKAGE_NAME_QTI_AISW, OpTopK.op_name, ) topk_op.AddInputTensors(topk_input_tensors) topk_op.AddOutputTensors(topk_output_tensors) topk_op.AddScalarParam( OpTopK.param_k, PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_UINT_32, {"data": np.uint32(k)}, ) # As of QNN 2.26, QNN HTP backend only allows users to set this value to 1, or else it will fail at op validation if len(node.args) > 3: largest = cast(bool, node.args[3]) topk_op.AddScalarParam( OpTopK.param_largest, PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_BOOL_8, {QCOM_DATA: largest}, ) return topk_op