# Copyright (c) Qualcomm Innovation Center, Inc. # All rights reserved # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Dict import executorch.backends.qualcomm.python.PyQnnWrapperAdaptor as PyQnnWrapper import torch from .node_visitor import NodeVisitor, register_node_visitor from .qnn_constants import OpSqrt, QNN_OP_PACKAGE_NAME_QTI_AISW @register_node_visitor class SQRT(NodeVisitor): target = ["aten.sqrt.default"] def __init__(self, *args) -> None: super().__init__(*args) def define_node( self, node: torch.fx.Node, nodes_to_wrappers: Dict[torch.fx.Node, PyQnnWrapper.TensorWrapper], ) -> PyQnnWrapper.PyQnnOpWrapper: # tensor input input_node = node.args[0] input_tensor = self.get_tensor(input_node, node) input_tensor_wrapper = self.define_tensor( input_node, input_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=True, ) sqrt_input_tensors = [input_tensor_wrapper] out_tensor = self.get_tensor(node, node) output_tensor_wrapper = self.define_tensor( node, out_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=False, ) sqrt_output_tensors = [output_tensor_wrapper] sqrt_op = PyQnnWrapper.PyQnnOpWrapper( node.name, QNN_OP_PACKAGE_NAME_QTI_AISW, OpSqrt.op_name, ) sqrt_op.AddInputTensors(sqrt_input_tensors) sqrt_op.AddOutputTensors(sqrt_output_tensors) return sqrt_op