# Copyright (c) Qualcomm Innovation Center, Inc. # All rights reserved # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import cast, Dict, List import executorch.backends.qualcomm.python.PyQnnWrapperAdaptor as PyQnnWrapper import numpy as np import torch from executorch.backends.qualcomm.utils.constants import QCOM_AXIS_ORDER, QCOM_DATA from .node_visitor import NodeVisitor, QNN_TENSOR_TYPE_MAP, register_node_visitor from .qnn_constants import OpPad, QNN_OP_PACKAGE_NAME_QTI_AISW @register_node_visitor class Pad(NodeVisitor): target = ["aten.constant_pad_nd.default"] def __init__(self, *args) -> None: super().__init__(*args) def define_node( self, node: torch.fx.Node, nodes_to_wrappers: Dict[torch.fx.Node, PyQnnWrapper.TensorWrapper], ) -> PyQnnWrapper.PyQnnOpWrapper: input_node = node.args[0] input_tensor = self.get_tensor(input_node, node) pad_inp_tensor_wrapper = self.define_tensor( input_node, input_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=True, ) pad_input_tensors = [pad_inp_tensor_wrapper] output_tensor = self.get_tensor(node, node) output_tensor_wrapper = self.define_tensor( node, output_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=False, ) pad_output_tensors = [output_tensor_wrapper] pad_amount_shape = [input_tensor.dim(), 2] # pytorch padding start from the last index pad_amount = np.reshape(cast(List[int], node.args[1]), (-1, 2))[::-1].astype( np.uint32 ) # fullfill the pad amount for each idex of tensor if zero_amounts := pad_amount_shape[0] - pad_amount.shape[0]: pad_amount = np.concatenate( (np.array([(0, 0)] * zero_amounts), pad_amount) ).astype(np.uint32) if QCOM_AXIS_ORDER in node.meta: pad_amount = np.transpose(pad_amount, node.meta[QCOM_AXIS_ORDER]) pad_amount_val = node.args[2] pad_op = PyQnnWrapper.PyQnnOpWrapper( node.name, QNN_OP_PACKAGE_NAME_QTI_AISW, OpPad.op_name, ) pad_op.AddInputTensors(pad_input_tensors) pad_op.AddOutputTensors(pad_output_tensors) # For now, we only support constant (0) padding due to torch implementation pad_op.AddScalarParam( OpPad.param_scheme, PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_UINT_32, {QCOM_DATA: np.uint32(OpPad.Scheme.CONSTANT)}, ) pad_op.AddScalarParam( OpPad.param_pad_constant_value, QNN_TENSOR_TYPE_MAP[type(pad_amount_val)], {QCOM_DATA: pad_amount_val}, ) pad_op.AddTensorParam( OpPad.param_pad_amount, PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_UINT_32, len(pad_amount_shape), pad_amount_shape, pad_amount, True, ) return pad_op