# Copyright (c) Qualcomm Innovation Center, Inc. # All rights reserved # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import cast, Dict import executorch.backends.qualcomm.python.PyQnnWrapperAdaptor as PyQnnWrapper import numpy as np import torch from executorch.backends.qualcomm.utils.constants import QCOM_DATA from .node_visitor import NodeVisitor, register_node_visitor from .qnn_constants import OpReluMinMax, QNN_OP_PACKAGE_NAME_QTI_AISW @register_node_visitor class HardTanhVisitor(NodeVisitor): target = ["aten.hardtanh.default"] def __init__(self, *args) -> None: super().__init__(*args) def define_node( self, node: torch.fx.Node, nodes_to_wrappers: Dict[torch.fx.Node, PyQnnWrapper.TensorWrapper], ) -> PyQnnWrapper.PyQnnOpWrapper: input_node = node.args[0] input_tensor = self.get_tensor(input_node, node) input_tensor_wrapper = self.define_tensor( input_node, input_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=True, ) # default value of output_min and output_max output_min = -1 output_max = 1 if len(node.args) > 1: # update output_min output_min = cast(float, node.args[1]) # update output_max output_max = cast(float, node.args[2]) output_tensor = self.get_tensor(node, node) output_tensor_wrapper = self.define_tensor( node, output_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=False, ) hardtanh_op = PyQnnWrapper.PyQnnOpWrapper( node.name, QNN_OP_PACKAGE_NAME_QTI_AISW, OpReluMinMax.op_name, ) hardtanh_op.AddInputTensors([input_tensor_wrapper]) hardtanh_op.AddOutputTensors([output_tensor_wrapper]) hardtanh_op.AddScalarParam( OpReluMinMax.param_max_value, PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_FLOAT_32, {QCOM_DATA: np.float32(output_max)}, ) hardtanh_op.AddScalarParam( OpReluMinMax.param_min_value, PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_FLOAT_32, {QCOM_DATA: np.float32(output_min)}, ) return hardtanh_op