# Copyright (c) Qualcomm Innovation Center, Inc. # All rights reserved # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import warnings from typing import cast, Dict, List import executorch.backends.qualcomm.python.PyQnnWrapperAdaptor as PyQnnWrapper import numpy as np import torch from .node_visitor import NodeVisitor, register_node_visitor from .qnn_constants import OpTile, QNN_OP_PACKAGE_NAME_QTI_AISW @register_node_visitor class Expand(NodeVisitor): target = ["aten.expand_copy.default"] def __init__(self, *args) -> None: super().__init__(*args) def define_node( self, node: torch.fx.Node, nodes_to_wrappers: Dict[torch.fx.Node, PyQnnWrapper.TensorWrapper], ) -> PyQnnWrapper.PyQnnOpWrapper: input_node = node.args[0] input_tensor = self.get_tensor(input_node, node) input_tensor_wrapper = self.define_tensor( input_node, input_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=True, ) output_tensor = self.get_tensor(node, node) output_tensor_wrapper = self.define_tensor( node, output_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=False, ) sizes = cast(List[int], node.args[1]) shape = input_tensor.shape input_dims = len(input_tensor.size()) output_dims = len(output_tensor.size()) if input_dims < output_dims: warnings.warn( f"[QNN Delegate Op Builder]: The rank of input tensor: {input_dims} is less than the rank of output tensor: {output_dims}.", stacklevel=1, ) return multiples = [1] * input_dims multiples_shape = [input_dims] for i in range(input_dims): if sizes[i] != -1 and shape[i] == 1: multiples[i] = sizes[i] tile_op = PyQnnWrapper.PyQnnOpWrapper( node.name, QNN_OP_PACKAGE_NAME_QTI_AISW, OpTile.op_name, ) tile_op.AddInputTensors([input_tensor_wrapper]) tile_op.AddOutputTensors([output_tensor_wrapper]) tile_op.AddTensorParam( OpTile.param_multiples, PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_UINT_32, len(multiples_shape), multiples_shape, np.array(multiples, dtype=np.uint32), True, ) return tile_op