# Copyright (c) Qualcomm Innovation Center, Inc. # All rights reserved # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Dict import executorch.backends.qualcomm.python.PyQnnWrapperAdaptor as PyQnnWrapper import torch from .node_visitor import NodeVisitor, register_node_visitor from .qnn_constants import OpMatMul, QNN_OP_PACKAGE_NAME_QTI_AISW @register_node_visitor class BMM(NodeVisitor): target = ["aten.bmm.default"] def __init__(self, *args) -> None: super().__init__(*args) def define_node( self, node: torch.fx.Node, nodes_to_wrappers: Dict[torch.fx.Node, PyQnnWrapper.TensorWrapper], ) -> PyQnnWrapper.PyQnnOpWrapper: bmm_input_tensors = [] for index in range(2): input_node = node.args[index] input_tensor = self.get_tensor(input_node, node) input_tensor_wrapper = self.define_tensor( input_node, input_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=True, ) bmm_input_tensors.append(input_tensor_wrapper) output_tensor = self.get_tensor(node, node) output_tensor_wrapper = self.define_tensor( node, output_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=False, ) bmm_output_tensors = [output_tensor_wrapper] bmm_op = PyQnnWrapper.PyQnnOpWrapper( node.name, QNN_OP_PACKAGE_NAME_QTI_AISW, OpMatMul.op_name ) bmm_op.AddInputTensors(bmm_input_tensors) bmm_op.AddOutputTensors(bmm_output_tensors) return bmm_op