/*------------------------------------------------------------------------- * drawElements Quality Program OpenGL ES 2.0 Module * ------------------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Texture format tests. * * Constants: * + nearest-neighbor filtering * + no mipmaps * + full texture coordinate range (but not outside) tested * + accessed from fragment shader * + texture unit 0 * + named texture object * * Variables: * + texture format * + texture type: 2D or cubemap *//*--------------------------------------------------------------------*/ #include "es2fTextureFormatTests.hpp" #include "glsTextureTestUtil.hpp" #include "gluTexture.hpp" #include "gluStrUtil.hpp" #include "gluTextureUtil.hpp" #include "gluPixelTransfer.hpp" #include "tcuSurfaceAccess.hpp" #include "tcuTestLog.hpp" #include "tcuTextureUtil.hpp" #include "deStringUtil.hpp" #include "glwEnums.hpp" #include "glwFunctions.hpp" namespace deqp { namespace gles2 { namespace Functional { using std::string; using std::vector; using tcu::Sampler; using tcu::TestLog; using namespace glu; using namespace gls::TextureTestUtil; using namespace glu::TextureTestUtil; // Texture2DFormatCase class Texture2DFormatCase : public tcu::TestCase { public: Texture2DFormatCase(tcu::TestContext &testCtx, glu::RenderContext &renderCtx, const char *name, const char *description, uint32_t format, uint32_t dataType, int width, int height); ~Texture2DFormatCase(void); void init(void); void deinit(void); IterateResult iterate(void); private: Texture2DFormatCase(const Texture2DFormatCase &other); Texture2DFormatCase &operator=(const Texture2DFormatCase &other); glu::RenderContext &m_renderCtx; const uint32_t m_format; const uint32_t m_dataType; const int m_width; const int m_height; glu::Texture2D *m_texture; TextureRenderer m_renderer; }; Texture2DFormatCase::Texture2DFormatCase(tcu::TestContext &testCtx, glu::RenderContext &renderCtx, const char *name, const char *description, uint32_t format, uint32_t dataType, int width, int height) : TestCase(testCtx, name, description) , m_renderCtx(renderCtx) , m_format(format) , m_dataType(dataType) , m_width(width) , m_height(height) , m_texture(DE_NULL) , m_renderer(renderCtx, testCtx.getLog(), glu::GLSL_VERSION_100_ES, glu::PRECISION_MEDIUMP) { } Texture2DFormatCase::~Texture2DFormatCase(void) { deinit(); } void Texture2DFormatCase::init(void) { TestLog &log = m_testCtx.getLog(); tcu::TextureFormat fmt = glu::mapGLTransferFormat(m_format, m_dataType); tcu::TextureFormatInfo spec = tcu::getTextureFormatInfo(fmt); std::ostringstream fmtName; fmtName << getTextureFormatStr(m_format) << ", " << getTypeStr(m_dataType); log << TestLog::Message << "2D texture, " << fmtName.str() << ", " << m_width << "x" << m_height << ",\n fill with " << formatGradient(&spec.valueMin, &spec.valueMax) << " gradient" << TestLog::EndMessage; m_texture = new Texture2D(m_renderCtx, m_format, m_dataType, m_width, m_height); // Fill level 0. m_texture->getRefTexture().allocLevel(0); tcu::fillWithComponentGradients(m_texture->getRefTexture().getLevel(0), spec.valueMin, spec.valueMax); } void Texture2DFormatCase::deinit(void) { delete m_texture; m_texture = DE_NULL; m_renderer.clear(); } Texture2DFormatCase::IterateResult Texture2DFormatCase::iterate(void) { TestLog &log = m_testCtx.getLog(); const glw::Functions &gl = m_renderCtx.getFunctions(); RandomViewport viewport(m_renderCtx.getRenderTarget(), m_width, m_height, deStringHash(getName())); tcu::Surface renderedFrame(viewport.width, viewport.height); tcu::Surface referenceFrame(viewport.width, viewport.height); tcu::RGBA threshold = m_renderCtx.getRenderTarget().getPixelFormat().getColorThreshold() + tcu::RGBA(1, 1, 1, 1); vector texCoord; ReferenceParams renderParams(TEXTURETYPE_2D); tcu::TextureFormatInfo spec = tcu::getTextureFormatInfo(m_texture->getRefTexture().getFormat()); const uint32_t wrapS = GL_CLAMP_TO_EDGE; const uint32_t wrapT = GL_CLAMP_TO_EDGE; const uint32_t minFilter = GL_NEAREST; const uint32_t magFilter = GL_NEAREST; renderParams.flags |= RenderParams::LOG_ALL; renderParams.samplerType = getSamplerType(m_texture->getRefTexture().getFormat()); renderParams.sampler = Sampler(Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::NEAREST, Sampler::NEAREST); renderParams.colorScale = spec.lookupScale; renderParams.colorBias = spec.lookupBias; computeQuadTexCoord2D(texCoord, tcu::Vec2(0.0f, 0.0f), tcu::Vec2(1.0f, 1.0f)); log << TestLog::Message << "Texture parameters:" << "\n WRAP_S = " << getTextureParameterValueStr(GL_TEXTURE_WRAP_S, wrapS) << "\n WRAP_T = " << getTextureParameterValueStr(GL_TEXTURE_WRAP_T, wrapT) << "\n MIN_FILTER = " << getTextureParameterValueStr(GL_TEXTURE_MIN_FILTER, minFilter) << "\n MAG_FILTER = " << getTextureParameterValueStr(GL_TEXTURE_MAG_FILTER, magFilter) << TestLog::EndMessage; // Setup base viewport. gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height); // Upload texture data to GL. m_texture->upload(); // Bind to unit 0. gl.activeTexture(GL_TEXTURE0); gl.bindTexture(GL_TEXTURE_2D, m_texture->getGLTexture()); // Setup nearest neighbor filtering and clamp-to-edge. gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, wrapS); gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, wrapT); gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, minFilter); gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, magFilter); GLU_EXPECT_NO_ERROR(gl.getError(), "Set texturing state"); // Draw. m_renderer.renderQuad(0, &texCoord[0], renderParams); glu::readPixels(m_renderCtx, viewport.x, viewport.y, renderedFrame.getAccess()); GLU_EXPECT_NO_ERROR(gl.getError(), "glReadPixels()"); // Compute reference. sampleTexture(tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat()), m_texture->getRefTexture(), &texCoord[0], renderParams); // Compare and log. bool isOk = compareImages(log, referenceFrame, renderedFrame, threshold); m_testCtx.setTestResult(isOk ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL, isOk ? "Pass" : "Image comparison failed"); return STOP; } // TextureCubeFormatCase class TextureCubeFormatCase : public tcu::TestCase { public: TextureCubeFormatCase(tcu::TestContext &testCtx, glu::RenderContext &renderCtx, const char *name, const char *description, uint32_t format, uint32_t dataType, int width, int height); ~TextureCubeFormatCase(void); void init(void); void deinit(void); IterateResult iterate(void); private: TextureCubeFormatCase(const TextureCubeFormatCase &other); TextureCubeFormatCase &operator=(const TextureCubeFormatCase &other); bool testFace(tcu::CubeFace face); glu::RenderContext &m_renderCtx; const uint32_t m_format; const uint32_t m_dataType; const int m_width; const int m_height; glu::TextureCube *m_texture; TextureRenderer m_renderer; int m_curFace; bool m_isOk; }; TextureCubeFormatCase::TextureCubeFormatCase(tcu::TestContext &testCtx, glu::RenderContext &renderCtx, const char *name, const char *description, uint32_t format, uint32_t dataType, int width, int height) : TestCase(testCtx, name, description) , m_renderCtx(renderCtx) , m_format(format) , m_dataType(dataType) , m_width(width) , m_height(height) , m_texture(DE_NULL) , m_renderer(renderCtx, testCtx.getLog(), glu::GLSL_VERSION_100_ES, glu::PRECISION_MEDIUMP) , m_curFace(0) , m_isOk(false) { } TextureCubeFormatCase::~TextureCubeFormatCase(void) { deinit(); } void TextureCubeFormatCase::init(void) { TestLog &log = m_testCtx.getLog(); tcu::TextureFormat fmt = glu::mapGLTransferFormat(m_format, m_dataType); tcu::TextureFormatInfo spec = tcu::getTextureFormatInfo(fmt); std::ostringstream fmtName; if (m_dataType) fmtName << getTextureFormatStr(m_format) << ", " << getTypeStr(m_dataType); else fmtName << getTextureFormatStr(m_format); log << TestLog::Message << "Cube map texture, " << fmtName.str() << ", " << m_width << "x" << m_height << ",\n fill with " << formatGradient(&spec.valueMin, &spec.valueMax) << " gradient" << TestLog::EndMessage; DE_ASSERT(m_width == m_height); m_texture = m_dataType != GL_NONE ? new TextureCube(m_renderCtx, m_format, m_dataType, m_width) // Implicit internal format. : new TextureCube(m_renderCtx, m_format, m_width); // Explicit internal format. // Fill level 0. for (int face = 0; face < tcu::CUBEFACE_LAST; face++) { tcu::Vec4 gMin, gMax; switch (face) { case 0: gMin = spec.valueMin.swizzle(0, 1, 2, 3); gMax = spec.valueMax.swizzle(0, 1, 2, 3); break; case 1: gMin = spec.valueMin.swizzle(2, 1, 0, 3); gMax = spec.valueMax.swizzle(2, 1, 0, 3); break; case 2: gMin = spec.valueMin.swizzle(1, 2, 0, 3); gMax = spec.valueMax.swizzle(1, 2, 0, 3); break; case 3: gMin = spec.valueMax.swizzle(0, 1, 2, 3); gMax = spec.valueMin.swizzle(0, 1, 2, 3); break; case 4: gMin = spec.valueMax.swizzle(2, 1, 0, 3); gMax = spec.valueMin.swizzle(2, 1, 0, 3); break; case 5: gMin = spec.valueMax.swizzle(1, 2, 0, 3); gMax = spec.valueMin.swizzle(1, 2, 0, 3); break; default: DE_ASSERT(false); } m_texture->getRefTexture().allocLevel((tcu::CubeFace)face, 0); tcu::fillWithComponentGradients(m_texture->getRefTexture().getLevelFace(0, (tcu::CubeFace)face), gMin, gMax); } // Upload texture data to GL. m_texture->upload(); // Initialize iteration state. m_curFace = 0; m_isOk = true; } void TextureCubeFormatCase::deinit(void) { delete m_texture; m_texture = DE_NULL; m_renderer.clear(); } bool TextureCubeFormatCase::testFace(tcu::CubeFace face) { const glw::Functions &gl = m_renderCtx.getFunctions(); TestLog &log = m_testCtx.getLog(); RandomViewport viewport(m_renderCtx.getRenderTarget(), m_width, m_height, deStringHash(getName()) + (uint32_t)face); tcu::Surface renderedFrame(viewport.width, viewport.height); tcu::Surface referenceFrame(viewport.width, viewport.height); tcu::RGBA threshold = m_renderCtx.getRenderTarget().getPixelFormat().getColorThreshold() + tcu::RGBA(1, 1, 1, 1); vector texCoord; ReferenceParams renderParams(TEXTURETYPE_CUBE); tcu::TextureFormatInfo spec = tcu::getTextureFormatInfo(m_texture->getRefTexture().getFormat()); renderParams.samplerType = getSamplerType(m_texture->getRefTexture().getFormat()); renderParams.sampler = Sampler(Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::NEAREST, Sampler::NEAREST); renderParams.sampler.seamlessCubeMap = false; renderParams.colorScale = spec.lookupScale; renderParams.colorBias = spec.lookupBias; // Log render info on first face. if (face == tcu::CUBEFACE_NEGATIVE_X) renderParams.flags |= RenderParams::LOG_ALL; computeQuadTexCoordCube(texCoord, face); // \todo [2011-10-28 pyry] Image set name / section? log << TestLog::Message << face << TestLog::EndMessage; // Setup base viewport. gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height); // Bind to unit 0. gl.activeTexture(GL_TEXTURE0); gl.bindTexture(GL_TEXTURE_CUBE_MAP, m_texture->getGLTexture()); // Setup nearest neighbor filtering and clamp-to-edge. gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST); gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_NEAREST); GLU_EXPECT_NO_ERROR(gl.getError(), "Set texturing state"); m_renderer.renderQuad(0, &texCoord[0], renderParams); glu::readPixels(m_renderCtx, viewport.x, viewport.y, renderedFrame.getAccess()); GLU_EXPECT_NO_ERROR(gl.getError(), "glReadPixels()"); // Compute reference. sampleTexture(tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat()), m_texture->getRefTexture(), &texCoord[0], renderParams); // Compare and log. return compareImages(log, referenceFrame, renderedFrame, threshold); } TextureCubeFormatCase::IterateResult TextureCubeFormatCase::iterate(void) { // Execute test for all faces. if (!testFace((tcu::CubeFace)m_curFace)) m_isOk = false; m_curFace += 1; if (m_curFace == tcu::CUBEFACE_LAST) { m_testCtx.setTestResult(m_isOk ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL, m_isOk ? "Pass" : "Image comparison failed"); return STOP; } else return CONTINUE; } TextureFormatTests::TextureFormatTests(Context &context) : TestCaseGroup(context, "format", "Texture Format Tests") { } TextureFormatTests::~TextureFormatTests(void) { } // Compressed2DFormatCase class Compressed2DFormatCase : public tcu::TestCase { public: Compressed2DFormatCase(tcu::TestContext &testCtx, glu::RenderContext &renderCtx, const glu::ContextInfo &renderCtxInfo, const char *name, const char *description, const std::vector &filenames); ~Compressed2DFormatCase(void); void init(void); void deinit(void); IterateResult iterate(void); private: Compressed2DFormatCase(const Compressed2DFormatCase &other); Compressed2DFormatCase &operator=(const Compressed2DFormatCase &other); glu::RenderContext &m_renderCtx; const glu::ContextInfo &m_renderCtxInfo; std::vector m_filenames; glu::Texture2D *m_texture; TextureRenderer m_renderer; }; Compressed2DFormatCase::Compressed2DFormatCase(tcu::TestContext &testCtx, glu::RenderContext &renderCtx, const glu::ContextInfo &renderCtxInfo, const char *name, const char *description, const std::vector &filenames) : TestCase(testCtx, name, description) , m_renderCtx(renderCtx) , m_renderCtxInfo(renderCtxInfo) , m_filenames(filenames) , m_texture(DE_NULL) , m_renderer(renderCtx, testCtx.getLog(), glu::GLSL_VERSION_100_ES, glu::PRECISION_MEDIUMP) { } Compressed2DFormatCase::~Compressed2DFormatCase(void) { deinit(); } void Compressed2DFormatCase::init(void) { // Create texture. m_texture = Texture2D::create(m_renderCtx, m_renderCtxInfo, m_testCtx.getArchive(), (int)m_filenames.size(), m_filenames); } void Compressed2DFormatCase::deinit(void) { delete m_texture; m_texture = DE_NULL; m_renderer.clear(); } Compressed2DFormatCase::IterateResult Compressed2DFormatCase::iterate(void) { const glw::Functions &gl = m_renderCtx.getFunctions(); TestLog &log = m_testCtx.getLog(); RandomViewport viewport(m_renderCtx.getRenderTarget(), m_texture->getRefTexture().getWidth(), m_texture->getRefTexture().getHeight(), deStringHash(getName())); tcu::Surface renderedFrame(viewport.width, viewport.height); tcu::Surface referenceFrame(viewport.width, viewport.height); tcu::RGBA threshold = m_renderCtx.getRenderTarget().getPixelFormat().getColorThreshold() + tcu::RGBA(1, 1, 1, 1); vector texCoord; computeQuadTexCoord2D(texCoord, tcu::Vec2(0.0f, 0.0f), tcu::Vec2(1.0f, 1.0f)); // Setup base viewport. gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height); // Bind to unit 0. gl.activeTexture(GL_TEXTURE0); gl.bindTexture(GL_TEXTURE_2D, m_texture->getGLTexture()); // Setup nearest neighbor filtering and clamp-to-edge. gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); GLU_EXPECT_NO_ERROR(gl.getError(), "Set texturing state"); // Draw. m_renderer.renderQuad(0, &texCoord[0], TEXTURETYPE_2D); glu::readPixels(m_renderCtx, viewport.x, viewport.y, renderedFrame.getAccess()); GLU_EXPECT_NO_ERROR(gl.getError(), "glReadPixels()"); // Compute reference. ReferenceParams refParams(TEXTURETYPE_2D); refParams.sampler = Sampler(Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::NEAREST, Sampler::NEAREST); sampleTexture(tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat()), m_texture->getRefTexture(), &texCoord[0], refParams); // Compare and log. bool isOk = compareImages(log, referenceFrame, renderedFrame, threshold); m_testCtx.setTestResult(isOk ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL, isOk ? "Pass" : "Image comparison failed"); return STOP; } // CompressedCubeFormatCase class CompressedCubeFormatCase : public tcu::TestCase { public: CompressedCubeFormatCase(tcu::TestContext &testCtx, glu::RenderContext &renderCtx, const glu::ContextInfo &renderCtxInfo, const char *name, const char *description, const std::vector &filenames); ~CompressedCubeFormatCase(void); void init(void); void deinit(void); IterateResult iterate(void); private: CompressedCubeFormatCase(const CompressedCubeFormatCase &other); CompressedCubeFormatCase &operator=(const CompressedCubeFormatCase &other); bool testFace(tcu::CubeFace face); glu::RenderContext &m_renderCtx; const glu::ContextInfo &m_renderCtxInfo; std::vector m_filenames; glu::TextureCube *m_texture; TextureRenderer m_renderer; int m_curFace; bool m_isOk; }; CompressedCubeFormatCase::CompressedCubeFormatCase(tcu::TestContext &testCtx, glu::RenderContext &renderCtx, const glu::ContextInfo &renderCtxInfo, const char *name, const char *description, const std::vector &filenames) : TestCase(testCtx, name, description) , m_renderCtx(renderCtx) , m_renderCtxInfo(renderCtxInfo) , m_filenames(filenames) , m_texture(DE_NULL) , m_renderer(renderCtx, testCtx.getLog(), glu::GLSL_VERSION_100_ES, glu::PRECISION_MEDIUMP) , m_curFace(0) , m_isOk(false) { } CompressedCubeFormatCase::~CompressedCubeFormatCase(void) { deinit(); } void CompressedCubeFormatCase::init(void) { // Create texture. DE_ASSERT(m_filenames.size() % 6 == 0); m_texture = TextureCube::create(m_renderCtx, m_renderCtxInfo, m_testCtx.getArchive(), (int)m_filenames.size() / 6, m_filenames); m_curFace = 0; m_isOk = true; } void CompressedCubeFormatCase::deinit(void) { delete m_texture; m_texture = DE_NULL; m_renderer.clear(); } bool CompressedCubeFormatCase::testFace(tcu::CubeFace face) { const glw::Functions &gl = m_renderCtx.getFunctions(); TestLog &log = m_testCtx.getLog(); RandomViewport viewport(m_renderCtx.getRenderTarget(), m_texture->getRefTexture().getSize(), m_texture->getRefTexture().getSize(), deStringHash(getName()) + (uint32_t)face); tcu::Surface renderedFrame(viewport.width, viewport.height); tcu::Surface referenceFrame(viewport.width, viewport.height); Sampler sampler(Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::NEAREST, Sampler::NEAREST); tcu::RGBA threshold = m_renderCtx.getRenderTarget().getPixelFormat().getColorThreshold() + tcu::RGBA(1, 1, 1, 1); vector texCoord; computeQuadTexCoordCube(texCoord, face); // \todo [2011-10-28 pyry] Image set name / section? log << TestLog::Message << face << TestLog::EndMessage; // Setup base viewport. gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height); // Bind to unit 0. gl.activeTexture(GL_TEXTURE0); gl.bindTexture(GL_TEXTURE_CUBE_MAP, m_texture->getGLTexture()); // Setup nearest neighbor filtering and clamp-to-edge. gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST); gl.texParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_NEAREST); GLU_EXPECT_NO_ERROR(gl.getError(), "Set texturing state"); m_renderer.renderQuad(0, &texCoord[0], TEXTURETYPE_CUBE); glu::readPixels(m_renderCtx, viewport.x, viewport.y, renderedFrame.getAccess()); GLU_EXPECT_NO_ERROR(gl.getError(), "glReadPixels()"); // Compute reference. sampleTexture(tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat()), m_texture->getRefTexture(), &texCoord[0], ReferenceParams(TEXTURETYPE_CUBE, sampler)); // Compare and log. return compareImages(log, referenceFrame, renderedFrame, threshold); } CompressedCubeFormatCase::IterateResult CompressedCubeFormatCase::iterate(void) { // Execute test for all faces. if (!testFace((tcu::CubeFace)m_curFace)) m_isOk = false; m_curFace += 1; if (m_curFace == tcu::CUBEFACE_LAST) { m_testCtx.setTestResult(m_isOk ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL, m_isOk ? "Pass" : "Image comparison failed"); return STOP; } else return CONTINUE; } vector toStringVector(const char *const *str, int numStr) { vector v; v.resize(numStr); for (int i = 0; i < numStr; i++) v[i] = str[i]; return v; } void TextureFormatTests::init(void) { struct { const char *name; uint32_t format; uint32_t dataType; } texFormats[] = {{"a8", GL_ALPHA, GL_UNSIGNED_BYTE}, {"l8", GL_LUMINANCE, GL_UNSIGNED_BYTE}, {"la88", GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE}, {"rgb565", GL_RGB, GL_UNSIGNED_SHORT_5_6_5}, {"rgb888", GL_RGB, GL_UNSIGNED_BYTE}, {"rgba4444", GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4}, {"rgba5551", GL_RGBA, GL_UNSIGNED_SHORT_5_5_5_1}, {"rgba8888", GL_RGBA, GL_UNSIGNED_BYTE}}; for (int formatNdx = 0; formatNdx < DE_LENGTH_OF_ARRAY(texFormats); formatNdx++) { uint32_t format = texFormats[formatNdx].format; uint32_t dataType = texFormats[formatNdx].dataType; string nameBase = texFormats[formatNdx].name; string descriptionBase = string(glu::getTextureFormatName(format)) + ", " + glu::getTypeName(dataType); addChild(new Texture2DFormatCase(m_testCtx, m_context.getRenderContext(), (nameBase + "_2d_pot").c_str(), (descriptionBase + ", GL_TEXTURE_2D").c_str(), format, dataType, 128, 128)); addChild(new Texture2DFormatCase(m_testCtx, m_context.getRenderContext(), (nameBase + "_2d_npot").c_str(), (descriptionBase + ", GL_TEXTURE_2D").c_str(), format, dataType, 63, 112)); addChild(new TextureCubeFormatCase(m_testCtx, m_context.getRenderContext(), (nameBase + "_cube_pot").c_str(), (descriptionBase + ", GL_TEXTURE_CUBE_MAP").c_str(), format, dataType, 64, 64)); addChild(new TextureCubeFormatCase(m_testCtx, m_context.getRenderContext(), (nameBase + "_cube_npot").c_str(), (descriptionBase + ", GL_TEXTURE_CUBE_MAP").c_str(), format, dataType, 57, 57)); } // ETC-1 compressed formats. { static const char *filenames[] = {"data/etc1/photo_helsinki_mip_0.pkm", "data/etc1/photo_helsinki_mip_1.pkm", "data/etc1/photo_helsinki_mip_2.pkm", "data/etc1/photo_helsinki_mip_3.pkm", "data/etc1/photo_helsinki_mip_4.pkm", "data/etc1/photo_helsinki_mip_5.pkm", "data/etc1/photo_helsinki_mip_6.pkm", "data/etc1/photo_helsinki_mip_7.pkm"}; addChild(new Compressed2DFormatCase(m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), "etc1_2d_pot", "GL_ETC1_RGB8_OES, GL_TEXTURE_2D", toStringVector(filenames, DE_LENGTH_OF_ARRAY(filenames)))); } { vector filenames; filenames.push_back("data/etc1/photo_helsinki_113x89.pkm"); addChild(new Compressed2DFormatCase(m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), "etc1_2d_npot", "GL_ETC1_RGB8_OES, GL_TEXTURE_2D", filenames)); } { static const char *faceExt[] = {"neg_x", "pos_x", "neg_y", "pos_y", "neg_z", "pos_z"}; const int potNumLevels = 7; vector potFilenames; for (int level = 0; level < potNumLevels; level++) for (int face = 0; face < tcu::CUBEFACE_LAST; face++) potFilenames.push_back(string("data/etc1/skybox_") + faceExt[face] + "_mip_" + de::toString(level) + ".pkm"); addChild(new CompressedCubeFormatCase(m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), "etc1_cube_pot", "GL_ETC1_RGB8_OES, GL_TEXTURE_CUBE_MAP", potFilenames)); vector npotFilenames; for (int face = 0; face < tcu::CUBEFACE_LAST; face++) npotFilenames.push_back(string("data/etc1/skybox_61x61_") + faceExt[face] + ".pkm"); addChild(new CompressedCubeFormatCase(m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), "etc1_cube_npot", "GL_ETC_RGB8_OES, GL_TEXTURE_CUBE_MAP", npotFilenames)); } } } // namespace Functional } // namespace gles2 } // namespace deqp