// Copyright 2013 The Chromium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/cert/ct_serialization.h" #include #include #include "base/files/file_path.h" #include "base/files/file_util.h" #include "net/base/test_completion_callback.h" #include "net/cert/merkle_tree_leaf.h" #include "net/cert/signed_certificate_timestamp.h" #include "net/cert/signed_tree_head.h" #include "net/cert/x509_certificate.h" #include "net/test/cert_test_util.h" #include "net/test/ct_test_util.h" #include "net/test/test_data_directory.h" #include "testing/gmock/include/gmock/gmock.h" #include "testing/gtest/include/gtest/gtest.h" using ::testing::ElementsAreArray; namespace net { class CtSerializationTest : public ::testing::Test { public: void SetUp() override { test_digitally_signed_ = ct::GetTestDigitallySigned(); } protected: std::string test_digitally_signed_; }; TEST_F(CtSerializationTest, DecodesDigitallySigned) { std::string_view digitally_signed(test_digitally_signed_); ct::DigitallySigned parsed; ASSERT_TRUE(ct::DecodeDigitallySigned(&digitally_signed, &parsed)); EXPECT_EQ( ct::DigitallySigned::HASH_ALGO_SHA256, parsed.hash_algorithm); EXPECT_EQ( ct::DigitallySigned::SIG_ALGO_ECDSA, parsed.signature_algorithm); // The encoded data contains the signature itself from the 4th byte. // The first bytes are: // 1 byte of hash algorithm // 1 byte of signature algorithm // 2 bytes - prefix containing length of the signature data. EXPECT_EQ( test_digitally_signed_.substr(4), parsed.signature_data); } TEST_F(CtSerializationTest, FailsToDecodePartialDigitallySigned) { std::string_view digitally_signed(test_digitally_signed_); std::string_view partial_digitally_signed( digitally_signed.substr(0, test_digitally_signed_.size() - 5)); ct::DigitallySigned parsed; ASSERT_FALSE(ct::DecodeDigitallySigned(&partial_digitally_signed, &parsed)); } TEST_F(CtSerializationTest, EncodesDigitallySigned) { ct::DigitallySigned digitally_signed; digitally_signed.hash_algorithm = ct::DigitallySigned::HASH_ALGO_SHA256; digitally_signed.signature_algorithm = ct::DigitallySigned::SIG_ALGO_ECDSA; digitally_signed.signature_data = test_digitally_signed_.substr(4); std::string encoded; ASSERT_TRUE(ct::EncodeDigitallySigned(digitally_signed, &encoded)); EXPECT_EQ(test_digitally_signed_, encoded); } TEST_F(CtSerializationTest, EncodesSignedEntryForX509Cert) { ct::SignedEntryData entry; ct::GetX509CertSignedEntry(&entry); std::string encoded; ASSERT_TRUE(ct::EncodeSignedEntry(entry, &encoded)); EXPECT_EQ((718U + 5U), encoded.size()); // First two bytes are log entry type. Next, length: // Length is 718 which is 512 + 206, which is 0x2ce std::string expected_prefix("\0\0\0\x2\xCE", 5); // Note we use std::string comparison rather than ASSERT_STREQ due // to null characters in the buffer. EXPECT_EQ(expected_prefix, encoded.substr(0, 5)); } TEST_F(CtSerializationTest, EncodesSignedEntryForPrecert) { ct::SignedEntryData entry; ct::GetPrecertSignedEntry(&entry); std::string encoded; ASSERT_TRUE(ct::EncodeSignedEntry(entry, &encoded)); EXPECT_EQ(604u, encoded.size()); // First two bytes are the log entry type. EXPECT_EQ(std::string("\x00\x01", 2), encoded.substr(0, 2)); // Next comes the 32-byte issuer key hash EXPECT_THAT(encoded.substr(2, 32), ElementsAreArray(entry.issuer_key_hash.data)); // Then the length of the TBS cert (604 bytes = 0x237) EXPECT_EQ(std::string("\x00\x02\x37", 3), encoded.substr(34, 3)); // Then the TBS cert itself EXPECT_EQ(entry.tbs_certificate, encoded.substr(37)); } TEST_F(CtSerializationTest, EncodesV1SCTSignedData) { base::Time timestamp = base::Time::UnixEpoch() + base::Milliseconds(1348589665525); std::string dummy_entry("abc"); std::string empty_extensions; // For now, no known failure cases. std::string encoded; ASSERT_TRUE(ct::EncodeV1SCTSignedData( timestamp, dummy_entry, empty_extensions, &encoded)); EXPECT_EQ((size_t) 15, encoded.size()); // Byte 0 is version, byte 1 is signature type // Bytes 2-10 are timestamp // Bytes 11-14 are the log signature // Byte 15 is the empty extension //EXPECT_EQ(0, timestamp.ToTimeT()); std::string expected_buffer( "\x0\x0\x0\x0\x1\x39\xFE\x35\x3C\xF5\x61\x62\x63\x0\x0", 15); EXPECT_EQ(expected_buffer, encoded); } TEST_F(CtSerializationTest, DecodesSCTList) { // Two items in the list: "abc", "def" std::string_view encoded("\x0\xa\x0\x3\x61\x62\x63\x0\x3\x64\x65\x66", 12); std::vector decoded; ASSERT_TRUE(ct::DecodeSCTList(encoded, &decoded)); ASSERT_STREQ("abc", decoded[0].data()); ASSERT_STREQ("def", decoded[1].data()); } TEST_F(CtSerializationTest, FailsDecodingInvalidSCTList) { // A list with one item that's too short std::string_view encoded("\x0\xa\x0\x3\x61\x62\x63\x0\x5\x64\x65\x66", 12); std::vector decoded; ASSERT_FALSE(ct::DecodeSCTList(encoded, &decoded)); } TEST_F(CtSerializationTest, EncodeSignedCertificateTimestamp) { std::string encoded_test_sct(ct::GetTestSignedCertificateTimestamp()); std::string_view encoded_sct(encoded_test_sct); scoped_refptr sct; ASSERT_TRUE(ct::DecodeSignedCertificateTimestamp(&encoded_sct, &sct)); std::string serialized; ASSERT_TRUE(ct::EncodeSignedCertificateTimestamp(sct, &serialized)); EXPECT_EQ(serialized, encoded_test_sct); } TEST_F(CtSerializationTest, DecodesSignedCertificateTimestamp) { std::string encoded_test_sct(ct::GetTestSignedCertificateTimestamp()); std::string_view encoded_sct(encoded_test_sct); scoped_refptr sct; ASSERT_TRUE(ct::DecodeSignedCertificateTimestamp(&encoded_sct, &sct)); EXPECT_EQ(0, sct->version); EXPECT_EQ(ct::GetTestPublicKeyId(), sct->log_id); base::Time expected_time = base::Time::UnixEpoch() + base::Milliseconds(1365181456089); EXPECT_EQ(expected_time, sct->timestamp); // Subtracting 4 bytes for signature data (hash & sig algs), // actual signature data should be 71 bytes. EXPECT_EQ((size_t) 71, sct->signature.signature_data.size()); EXPECT_TRUE(sct->extensions.empty()); } TEST_F(CtSerializationTest, FailsDecodingInvalidSignedCertificateTimestamp) { // Invalid version std::string_view invalid_version_sct("\x2\x0", 2); scoped_refptr sct; ASSERT_FALSE( ct::DecodeSignedCertificateTimestamp(&invalid_version_sct, &sct)); // Valid version, invalid length (missing data) std::string_view invalid_length_sct("\x0\xa\xb\xc", 4); ASSERT_FALSE( ct::DecodeSignedCertificateTimestamp(&invalid_length_sct, &sct)); } TEST_F(CtSerializationTest, EncodesMerkleTreeLeafForX509Cert) { ct::MerkleTreeLeaf tree_leaf; ct::GetX509CertTreeLeaf(&tree_leaf); std::string encoded; ASSERT_TRUE(ct::EncodeTreeLeaf(tree_leaf, &encoded)); EXPECT_EQ(741u, encoded.size()) << "Merkle tree leaf encoded incorrectly"; EXPECT_EQ(std::string("\x00", 1), encoded.substr(0, 1)) << "Version encoded incorrectly"; EXPECT_EQ(std::string("\x00", 1), encoded.substr(1, 1)) << "Merkle tree leaf type encoded incorrectly"; EXPECT_EQ(std::string("\x00\x00\x01\x45\x3c\x5f\xb8\x35", 8), encoded.substr(2, 8)) << "Timestamp encoded incorrectly"; EXPECT_EQ(std::string("\x00\x00", 2), encoded.substr(10, 2)) << "Log entry type encoded incorrectly"; EXPECT_EQ(std::string("\x00\x02\xce", 3), encoded.substr(12, 3)) << "Certificate length encoded incorrectly"; EXPECT_EQ(tree_leaf.signed_entry.leaf_certificate, encoded.substr(15, 718)) << "Certificate encoded incorrectly"; EXPECT_EQ(std::string("\x00\x06", 2), encoded.substr(733, 2)) << "CT extensions length encoded incorrectly"; EXPECT_EQ(tree_leaf.extensions, encoded.substr(735, 6)) << "CT extensions encoded incorrectly"; } TEST_F(CtSerializationTest, EncodesMerkleTreeLeafForPrecert) { ct::MerkleTreeLeaf tree_leaf; ct::GetPrecertTreeLeaf(&tree_leaf); std::string encoded; ASSERT_TRUE(ct::EncodeTreeLeaf(tree_leaf, &encoded)); EXPECT_EQ(622u, encoded.size()) << "Merkle tree leaf encoded incorrectly"; EXPECT_EQ(std::string("\x00", 1), encoded.substr(0, 1)) << "Version encoded incorrectly"; EXPECT_EQ(std::string("\x00", 1), encoded.substr(1, 1)) << "Merkle tree leaf type encoded incorrectly"; EXPECT_EQ(std::string("\x00\x00\x01\x45\x3c\x5f\xb8\x35", 8), encoded.substr(2, 8)) << "Timestamp encoded incorrectly"; EXPECT_EQ(std::string("\x00\x01", 2), encoded.substr(10, 2)) << "Log entry type encoded incorrectly"; EXPECT_THAT(encoded.substr(12, 32), ElementsAreArray(tree_leaf.signed_entry.issuer_key_hash.data)) << "Issuer key hash encoded incorrectly"; EXPECT_EQ(std::string("\x00\x02\x37", 3), encoded.substr(44, 3)) << "TBS certificate length encoded incorrectly"; EXPECT_EQ(tree_leaf.signed_entry.tbs_certificate, encoded.substr(47, 567)) << "TBS certificate encoded incorrectly"; EXPECT_EQ(std::string("\x00\x06", 2), encoded.substr(614, 2)) << "CT extensions length encoded incorrectly"; EXPECT_EQ(tree_leaf.extensions, encoded.substr(616, 6)) << "CT extensions encoded incorrectly"; } TEST_F(CtSerializationTest, EncodesValidSignedTreeHead) { ct::SignedTreeHead signed_tree_head; ASSERT_TRUE(GetSampleSignedTreeHead(&signed_tree_head)); std::string encoded; ASSERT_TRUE(ct::EncodeTreeHeadSignature(signed_tree_head, &encoded)); // Expected size is 50 bytes: // Byte 0 is version, byte 1 is signature type // Bytes 2-9 are timestamp // Bytes 10-17 are tree size // Bytes 18-49 are sha256 root hash ASSERT_EQ(50u, encoded.length()); std::string expected_buffer( "\x0\x1\x0\x0\x1\x45\x3c\x5f\xb8\x35\x0\x0\x0\x0\x0\x0\x0\x15", 18); expected_buffer.append(ct::GetSampleSTHSHA256RootHash()); ASSERT_EQ(expected_buffer, encoded); } } // namespace net