// Copyright 2012 The Chromium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "crypto/secure_hash.h" #include #include #include #include #include #include "crypto/sha2.h" #include "testing/gtest/include/gtest/gtest.h" #include "third_party/boringssl/src/include/openssl/sha.h" class SecureHashTest : public testing::Test, public testing::WithParamInterface< std::pair> { public: SecureHashTest() : algorithm_(GetParam().first), hash_length_(GetParam().second) {} protected: crypto::SecureHash::Algorithm algorithm_; const uint64_t hash_length_; }; TEST_P(SecureHashTest, TestUpdateSHA256) { std::string input3; std::vector expected_hash_of_input_3; switch (algorithm_) { case crypto::SecureHash::SHA256: // Example B.3 from FIPS 180-2: long message. input3 = std::string(500000, 'a'); // 'a' repeated half a million times expected_hash_of_input_3 = { 0xcd, 0xc7, 0x6e, 0x5c, 0x99, 0x14, 0xfb, 0x92, 0x81, 0xa1, 0xc7, 0xe2, 0x84, 0xd7, 0x3e, 0x67, 0xf1, 0x80, 0x9a, 0x48, 0xa4, 0x97, 0x20, 0x0e, 0x04, 0x6d, 0x39, 0xcc, 0xc7, 0x11, 0x2c, 0xd0}; break; case crypto::SecureHash::SHA512: // Example C.3 from FIPS 180-2: long message. input3 = std::string(500000, 'a'); // 'a' repeated half a million times expected_hash_of_input_3 = { 0xe7, 0x18, 0x48, 0x3d, 0x0c, 0xe7, 0x69, 0x64, 0x4e, 0x2e, 0x42, 0xc7, 0xbc, 0x15, 0xb4, 0x63, 0x8e, 0x1f, 0x98, 0xb1, 0x3b, 0x20, 0x44, 0x28, 0x56, 0x32, 0xa8, 0x03, 0xaf, 0xa9, 0x73, 0xeb, 0xde, 0x0f, 0xf2, 0x44, 0x87, 0x7e, 0xa6, 0x0a, 0x4c, 0xb0, 0x43, 0x2c, 0xe5, 0x77, 0xc3, 0x1b, 0xeb, 0x00, 0x9c, 0x5c, 0x2c, 0x49, 0xaa, 0x2e, 0x4e, 0xad, 0xb2, 0x17, 0xad, 0x8c, 0xc0, 0x9b}; break; } uint8_t output3[hash_length_]; std::unique_ptr ctx( crypto::SecureHash::Create(algorithm_)); ctx->Update(input3.data(), input3.size()); ctx->Update(input3.data(), input3.size()); ctx->Finish(output3, sizeof(output3)); for (size_t i = 0; i < hash_length_; i++) EXPECT_EQ(expected_hash_of_input_3[i], static_cast(output3[i])); } TEST_P(SecureHashTest, TestClone) { std::string input1(10001, 'a'); // 'a' repeated 10001 times std::string input2(10001, 'd'); // 'd' repeated 10001 times std::vector expected_hash_of_input_1; std::vector expected_hash_of_input_1_and_2; switch (algorithm_) { case crypto::SecureHash::SHA256: expected_hash_of_input_1 = { 0x0c, 0xab, 0x99, 0xa0, 0x58, 0x60, 0x0f, 0xfa, 0xad, 0x12, 0x92, 0xd0, 0xc5, 0x3c, 0x05, 0x48, 0xeb, 0xaf, 0x88, 0xdd, 0x1d, 0x01, 0x03, 0x03, 0x45, 0x70, 0x5f, 0x01, 0x8a, 0x81, 0x39, 0x09}; expected_hash_of_input_1_and_2 = { 0x4c, 0x8e, 0x26, 0x5a, 0xc3, 0x85, 0x1f, 0x1f, 0xa5, 0x04, 0x1c, 0xc7, 0x88, 0x53, 0x1c, 0xc7, 0x80, 0x47, 0x15, 0xfb, 0x47, 0xff, 0x72, 0xb1, 0x28, 0x37, 0xb0, 0x4d, 0x6e, 0x22, 0x2e, 0x4d}; break; case crypto::SecureHash::SHA512: expected_hash_of_input_1 = { 0xea, 0x03, 0xb2, 0x23, 0x32, 0x29, 0xc8, 0x87, 0x86, 0x33, 0xa3, 0x70, 0xc7, 0xb2, 0x40, 0xea, 0xef, 0xd9, 0x55, 0xe2, 0xb3, 0x79, 0xd6, 0xb3, 0x3f, 0x5e, 0xff, 0x89, 0xfd, 0x86, 0x7b, 0x10, 0xe2, 0xc1, 0x3b, 0x2f, 0xf5, 0x29, 0x80, 0xa0, 0xb0, 0xf9, 0xcf, 0x47, 0xa7, 0xff, 0x73, 0xac, 0xd2, 0x66, 0x9e, 0x53, 0x78, 0x9f, 0xc6, 0x07, 0x7a, 0xb7, 0x09, 0x1f, 0xa4, 0x3b, 0x18, 0x00}; expected_hash_of_input_1_and_2 = { 0x41, 0x6d, 0x46, 0x8d, 0x8a, 0x84, 0x3d, 0xf9, 0x43, 0xac, 0xe6, 0x4d, 0x5b, 0x60, 0xd7, 0x1a, 0xb1, 0xe6, 0x2d, 0xd3, 0xe6, 0x97, 0xaf, 0x6f, 0x34, 0x97, 0x8f, 0x01, 0xd4, 0x15, 0x06, 0xfa, 0x69, 0x48, 0x0e, 0x24, 0x0d, 0x98, 0x84, 0x76, 0xd2, 0x95, 0x4c, 0x16, 0x02, 0xfd, 0x71, 0xd4, 0x25, 0xb3, 0x8f, 0xf2, 0x60, 0xa3, 0x0e, 0xdb, 0xe9, 0x87, 0x32, 0xfc, 0xf3, 0x2d, 0x0a, 0x28}; break; } uint8_t output1[hash_length_]; uint8_t output2[hash_length_]; uint8_t output3[hash_length_]; std::unique_ptr ctx1( crypto::SecureHash::Create(algorithm_)); ctx1->Update(input1.data(), input1.size()); std::unique_ptr ctx2(ctx1->Clone()); std::unique_ptr ctx3(ctx2->Clone()); // At this point, ctx1, ctx2, and ctx3 are all equivalent and represent the // state after hashing input1. // Updating ctx1 and ctx2 with input2 should produce equivalent results. ctx1->Update(input2.data(), input2.size()); ctx1->Finish(output1, sizeof(output1)); ctx2->Update(input2.data(), input2.size()); ctx2->Finish(output2, sizeof(output2)); EXPECT_EQ(0, memcmp(output1, output2, hash_length_)); EXPECT_EQ( 0, memcmp(output1, expected_hash_of_input_1_and_2.data(), hash_length_)); // Finish() ctx3, which should produce the hash of input1. ctx3->Finish(&output3, sizeof(output3)); EXPECT_EQ(0, memcmp(output3, expected_hash_of_input_1.data(), hash_length_)); } TEST_P(SecureHashTest, TestLength) { std::unique_ptr ctx( crypto::SecureHash::Create(algorithm_)); EXPECT_EQ(hash_length_, ctx->GetHashLength()); } TEST_P(SecureHashTest, Equality) { std::string input1(10001, 'a'); // 'a' repeated 10001 times std::string input2(10001, 'd'); // 'd' repeated 10001 times uint8_t output1[hash_length_]; uint8_t output2[hash_length_]; // Call Update() twice on input1 and input2. std::unique_ptr ctx1( crypto::SecureHash::Create(algorithm_)); ctx1->Update(input1.data(), input1.size()); ctx1->Update(input2.data(), input2.size()); ctx1->Finish(output1, sizeof(output1)); // Call Update() once one input1 + input2 (concatenation). std::unique_ptr ctx2( crypto::SecureHash::Create(algorithm_)); std::string input3 = input1 + input2; ctx2->Update(input3.data(), input3.size()); ctx2->Finish(output2, sizeof(output2)); // The hash should be the same. EXPECT_EQ(0, memcmp(output1, output2, hash_length_)); } INSTANTIATE_TEST_SUITE_P( All, SecureHashTest, testing::Values( std::make_pair(crypto::SecureHash::SHA256, SHA256_DIGEST_LENGTH), std::make_pair(crypto::SecureHash::SHA512, SHA512_DIGEST_LENGTH)));