// Copyright 2017 The Chromium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/synchronization/waitable_event.h" #include #include #include #include #include "base/apple/mach_logging.h" #include "base/files/scoped_file.h" #include "base/notreached.h" #include "base/posix/eintr_wrapper.h" #include "base/threading/scoped_blocking_call.h" #include "base/time/time.h" #include "base/time/time_override.h" #include "build/build_config.h" namespace base { WaitableEvent::WaitableEvent(ResetPolicy reset_policy, InitialState initial_state) : policy_(reset_policy) { mach_port_options_t options{}; options.flags = MPO_INSERT_SEND_RIGHT; options.mpl.mpl_qlimit = 1; mach_port_t name; kern_return_t kr = mach_port_construct(mach_task_self(), &options, /*context=*/0, &name); MACH_CHECK(kr == KERN_SUCCESS, kr) << "mach_port_construct"; receive_right_ = new ReceiveRight(name); send_right_.reset(name); if (initial_state == InitialState::SIGNALED) { Signal(); } } void WaitableEvent::Reset() { PeekPort(receive_right_->Name(), true); } void WaitableEvent::SignalImpl() { mach_msg_empty_send_t msg{}; msg.header.msgh_bits = MACH_MSGH_BITS_REMOTE(MACH_MSG_TYPE_COPY_SEND); msg.header.msgh_size = sizeof(&msg); msg.header.msgh_remote_port = send_right_.get(); // If the event is already signaled, this will time out because the queue // has a length of one. kern_return_t kr = mach_msg(&msg.header, MACH_SEND_MSG | MACH_SEND_TIMEOUT, sizeof(msg), /*rcv_size=*/0, /*rcv_name=*/MACH_PORT_NULL, /*timeout=*/0, /*notify=*/MACH_PORT_NULL); MACH_CHECK(kr == KERN_SUCCESS || kr == MACH_SEND_TIMED_OUT, kr) << "mach_msg"; } bool WaitableEvent::IsSignaled() { return PeekPort(receive_right_->Name(), policy_ == ResetPolicy::AUTOMATIC); } bool WaitableEvent::TimedWaitImpl(TimeDelta wait_delta) { mach_msg_empty_rcv_t msg{}; msg.header.msgh_local_port = receive_right_->Name(); mach_msg_option_t options = MACH_RCV_MSG; if (!wait_delta.is_max()) { options |= MACH_RCV_TIMEOUT | MACH_RCV_INTERRUPT; } mach_msg_size_t rcv_size = sizeof(msg); if (policy_ == ResetPolicy::MANUAL) { // To avoid dequeuing the message, receive with a size of 0 and set // MACH_RCV_LARGE to keep the message in the queue. options |= MACH_RCV_LARGE; rcv_size = 0; } // TimeTicks takes care of overflow but we special case is_max() nonetheless // to avoid invoking TimeTicksNowIgnoringOverride() unnecessarily (same for // the increment step of the for loop if the condition variable returns // early). Ref: https://crbug.com/910524#c7 const TimeTicks end_time = wait_delta.is_max() ? TimeTicks::Max() : subtle::TimeTicksNowIgnoringOverride() + wait_delta; // Fake |kr| value to bootstrap the for loop. kern_return_t kr = MACH_RCV_INTERRUPTED; for (mach_msg_timeout_t timeout = wait_delta.is_max() ? MACH_MSG_TIMEOUT_NONE : saturated_cast( wait_delta.InMillisecondsRoundedUp()); // If the thread is interrupted during mach_msg(), the system call will // be restarted. However, the libsyscall wrapper does not adjust the // timeout by the amount of time already waited. Using MACH_RCV_INTERRUPT // will instead return from mach_msg(), so that the call can be retried // with an adjusted timeout. kr == MACH_RCV_INTERRUPTED; timeout = end_time.is_max() ? MACH_MSG_TIMEOUT_NONE : std::max(mach_msg_timeout_t{0}, saturated_cast( (end_time - subtle::TimeTicksNowIgnoringOverride()) .InMillisecondsRoundedUp()))) { kr = mach_msg(&msg.header, options, /*send_size=*/0, rcv_size, receive_right_->Name(), timeout, /*notify=*/MACH_PORT_NULL); } if (kr == KERN_SUCCESS) { return true; } else if (rcv_size == 0 && kr == MACH_RCV_TOO_LARGE) { return true; } else { MACH_CHECK(kr == MACH_RCV_TIMED_OUT, kr) << "mach_msg"; return false; } } // static size_t WaitableEvent::WaitManyImpl(WaitableEvent** raw_waitables, size_t count) { // On macOS 10.11+, using Mach port sets may cause system instability, per // https://crbug.com/756102. On macOS 10.12+, a kqueue can be used // instead to work around that. enum WaitManyPrimitive { KQUEUE, PORT_SET, }; #if BUILDFLAG(IS_IOS) const WaitManyPrimitive kPrimitive = PORT_SET; #else const WaitManyPrimitive kPrimitive = KQUEUE; #endif if (kPrimitive == KQUEUE) { std::vector events(count); for (size_t i = 0; i < count; ++i) { EV_SET64(&events[i], raw_waitables[i]->receive_right_->Name(), EVFILT_MACHPORT, EV_ADD, 0, 0, i, 0, 0); } std::vector out_events(count); ScopedFD wait_many(kqueue()); PCHECK(wait_many.is_valid()) << "kqueue"; const int count_int = checked_cast(count); int rv = HANDLE_EINTR(kevent64(wait_many.get(), events.data(), count_int, out_events.data(), count_int, /*flags=*/0, /*timeout=*/nullptr)); PCHECK(rv > 0) << "kevent64"; size_t triggered = std::numeric_limits::max(); for (size_t i = 0; i < static_cast(rv); ++i) { // WaitMany should return the lowest index in |raw_waitables| that was // triggered. size_t index = static_cast(out_events[i].udata); triggered = std::min(triggered, index); } if (raw_waitables[triggered]->policy_ == ResetPolicy::AUTOMATIC) { // The message needs to be dequeued to reset the event. PeekPort(raw_waitables[triggered]->receive_right_->Name(), /*dequeue=*/true); } return triggered; } else { DCHECK_EQ(kPrimitive, PORT_SET); kern_return_t kr; apple::ScopedMachPortSet port_set; { mach_port_t name; kr = mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_PORT_SET, &name); MACH_CHECK(kr == KERN_SUCCESS, kr) << "mach_port_allocate"; port_set.reset(name); } for (size_t i = 0; i < count; ++i) { kr = mach_port_insert_member(mach_task_self(), raw_waitables[i]->receive_right_->Name(), port_set.get()); MACH_CHECK(kr == KERN_SUCCESS, kr) << "index " << i; } mach_msg_empty_rcv_t msg{}; // Wait on the port set. Only specify space enough for the header, to // identify which port in the set is signaled. Otherwise, receiving from the // port set may dequeue a message for a manual-reset event object, which // would cause it to be reset. kr = mach_msg(&msg.header, MACH_RCV_MSG | MACH_RCV_LARGE | MACH_RCV_LARGE_IDENTITY, /*send_size=*/0, sizeof(msg.header), port_set.get(), /*timeout=*/0, /*notify=*/MACH_PORT_NULL); MACH_CHECK(kr == MACH_RCV_TOO_LARGE, kr) << "mach_msg"; for (size_t i = 0; i < count; ++i) { WaitableEvent* event = raw_waitables[i]; if (msg.header.msgh_local_port == event->receive_right_->Name()) { if (event->policy_ == ResetPolicy::AUTOMATIC) { // The message needs to be dequeued to reset the event. PeekPort(msg.header.msgh_local_port, true); } return i; } } NOTREACHED(); return 0; } } // static bool WaitableEvent::PeekPort(mach_port_t port, bool dequeue) { if (dequeue) { mach_msg_empty_rcv_t msg{}; msg.header.msgh_local_port = port; kern_return_t kr = mach_msg(&msg.header, MACH_RCV_MSG | MACH_RCV_TIMEOUT, /*send_size=*/0, sizeof(msg), port, /*timeout=*/0, /*notify=*/MACH_PORT_NULL); if (kr == KERN_SUCCESS) { return true; } else { MACH_CHECK(kr == MACH_RCV_TIMED_OUT, kr) << "mach_msg"; return false; } } else { mach_port_seqno_t seqno = 0; mach_msg_size_t size; mach_msg_id_t id; mach_msg_trailer_t trailer; mach_msg_type_number_t trailer_size = sizeof(trailer); kern_return_t kr = mach_port_peek( mach_task_self(), port, MACH_RCV_TRAILER_TYPE(MACH_RCV_TRAILER_NULL), &seqno, &size, &id, reinterpret_cast(&trailer), &trailer_size); if (kr == KERN_SUCCESS) { return true; } else { MACH_CHECK(kr == KERN_FAILURE, kr) << "mach_port_peek"; return false; } } } WaitableEvent::ReceiveRight::ReceiveRight(mach_port_t name) : right_(name) {} WaitableEvent::ReceiveRight::~ReceiveRight() = default; } // namespace base