// Copyright 2013 The Chromium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/process/process_metrics.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "base/containers/span.h" #include "base/cpu.h" #include "base/files/dir_reader_posix.h" #include "base/files/file_util.h" #include "base/logging.h" #include "base/memory/ptr_util.h" #include "base/notreached.h" #include "base/numerics/clamped_math.h" #include "base/numerics/safe_conversions.h" #include "base/process/internal_linux.h" #include "base/strings/string_number_conversions.h" #include "base/strings/string_split.h" #include "base/strings/string_tokenizer.h" #include "base/strings/string_util.h" #include "base/system/sys_info.h" #include "base/threading/thread_restrictions.h" #include "base/types/expected.h" #include "base/values.h" #include "build/build_config.h" #include "third_party/abseil-cpp/absl/strings/ascii.h" namespace base { class ScopedAllowBlockingForProcessMetrics : public ScopedAllowBlocking {}; namespace { #if BUILDFLAG(IS_CHROMEOS) // Read a file with a single number string and return the number as a uint64_t. uint64_t ReadFileToUint64(const FilePath& file) { std::string file_contents; if (!ReadFileToString(file, &file_contents)) return 0; TrimWhitespaceASCII(file_contents, TRIM_ALL, &file_contents); uint64_t file_contents_uint64 = 0; if (!StringToUint64(file_contents, &file_contents_uint64)) return 0; return file_contents_uint64; } #endif // Get the total CPU from a proc stat buffer. Return value is a TimeDelta // converted from a number of jiffies on success or an error code if parsing // failed. base::expected ParseTotalCPUTimeFromStats( base::span proc_stats) { const std::optional utime = internal::GetProcStatsFieldAsOptionalInt64(proc_stats, internal::VM_UTIME); if (utime.value_or(-1) < 0) { return base::unexpected(ProcessCPUUsageError::kSystemError); } const std::optional stime = internal::GetProcStatsFieldAsOptionalInt64(proc_stats, internal::VM_STIME); if (stime.value_or(-1) < 0) { return base::unexpected(ProcessCPUUsageError::kSystemError); } const TimeDelta cpu_time = internal::ClockTicksToTimeDelta( base::ClampAdd(utime.value(), stime.value())); CHECK(!cpu_time.is_negative()); return base::ok(cpu_time); } } // namespace // static std::unique_ptr ProcessMetrics::CreateProcessMetrics( ProcessHandle process) { return WrapUnique(new ProcessMetrics(process)); } size_t ProcessMetrics::GetResidentSetSize() const { return internal::ReadProcStatsAndGetFieldAsSizeT(process_, internal::VM_RSS) * checked_cast(getpagesize()); } base::expected ProcessMetrics::GetCumulativeCPUUsage() { std::string buffer; std::vector proc_stats; if (!internal::ReadProcStats(process_, &buffer) || !internal::ParseProcStats(buffer, &proc_stats)) { return base::unexpected(ProcessCPUUsageError::kSystemError); } return ParseTotalCPUTimeFromStats(proc_stats); } bool ProcessMetrics::GetCumulativeCPUUsagePerThread( CPUUsagePerThread& cpu_per_thread) { cpu_per_thread.clear(); internal::ForEachProcessTask( process_, [&cpu_per_thread](PlatformThreadId tid, const FilePath& task_path) { FilePath thread_stat_path = task_path.Append("stat"); std::string buffer; std::vector proc_stats; if (!internal::ReadProcFile(thread_stat_path, &buffer) || !internal::ParseProcStats(buffer, &proc_stats)) { return; } const base::expected thread_time = ParseTotalCPUTimeFromStats(proc_stats); if (thread_time.has_value()) { cpu_per_thread.emplace_back(tid, thread_time.value()); } }); return !cpu_per_thread.empty(); } #if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS) || BUILDFLAG(IS_ANDROID) uint64_t ProcessMetrics::GetVmSwapBytes() const { return internal::ReadProcStatusAndGetKbFieldAsSizeT(process_, "VmSwap") * 1024; } bool ProcessMetrics::GetPageFaultCounts(PageFaultCounts* counts) const { // We are not using internal::ReadStatsFileAndGetFieldAsInt64(), since it // would read the file twice, and return inconsistent numbers. std::string stats_data; if (!internal::ReadProcStats(process_, &stats_data)) return false; std::vector proc_stats; if (!internal::ParseProcStats(stats_data, &proc_stats)) return false; counts->minor = internal::GetProcStatsFieldAsInt64(proc_stats, internal::VM_MINFLT); counts->major = internal::GetProcStatsFieldAsInt64(proc_stats, internal::VM_MAJFLT); return true; } #endif // BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS) || // BUILDFLAG(IS_ANDROID) int ProcessMetrics::GetOpenFdCount() const { // Use /proc//fd to count the number of entries there. FilePath fd_path = internal::GetProcPidDir(process_).Append("fd"); DirReaderPosix dir_reader(fd_path.value().c_str()); if (!dir_reader.IsValid()) return -1; int total_count = 0; for (; dir_reader.Next(); ) { const char* name = dir_reader.name(); if (strcmp(name, ".") != 0 && strcmp(name, "..") != 0) ++total_count; } return total_count; } int ProcessMetrics::GetOpenFdSoftLimit() const { // Use /proc//limits to read the open fd limit. FilePath fd_path = internal::GetProcPidDir(process_).Append("limits"); std::string limits_contents; if (!ReadFileToStringNonBlocking(fd_path, &limits_contents)) return -1; for (const auto& line : SplitStringPiece( limits_contents, "\n", KEEP_WHITESPACE, SPLIT_WANT_NONEMPTY)) { if (!StartsWith(line, "Max open files")) continue; auto tokens = SplitStringPiece(line, " ", TRIM_WHITESPACE, SPLIT_WANT_NONEMPTY); if (tokens.size() > 3) { int limit = -1; if (!StringToInt(tokens[3], &limit)) return -1; return limit; } } return -1; } #if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS) || BUILDFLAG(IS_AIX) ProcessMetrics::ProcessMetrics(ProcessHandle process) : process_(process), last_absolute_idle_wakeups_(0) {} #else ProcessMetrics::ProcessMetrics(ProcessHandle process) : process_(process) {} #endif size_t GetSystemCommitCharge() { SystemMemoryInfoKB meminfo; if (!GetSystemMemoryInfo(&meminfo)) return 0; return GetSystemCommitChargeFromMeminfo(meminfo); } size_t GetSystemCommitChargeFromMeminfo(const SystemMemoryInfoKB& meminfo) { // TODO(crbug.com/315988925): This math is incorrect: `cached` can be very // large so that `free` + `buffers` + `cached` > `total`. Replace this with a // more meaningful metric or remove it. In the meantime, convert underflows to // 0 instead of crashing. return ClampedNumeric(meminfo.total) - meminfo.free - meminfo.buffers - meminfo.cached; } int ParseProcStatCPU(std::string_view input) { // |input| may be empty if the process disappeared somehow. // e.g. http://crbug.com/145811. if (input.empty()) return -1; size_t start = input.find_last_of(')'); if (start == input.npos) return -1; // Number of spaces remaining until reaching utime's index starting after the // last ')'. int num_spaces_remaining = internal::VM_UTIME - 1; size_t i = start; while ((i = input.find(' ', i + 1)) != input.npos) { // Validate the assumption that there aren't any contiguous spaces // in |input| before utime. DCHECK_NE(input[i - 1], ' '); if (--num_spaces_remaining == 0) { int utime = 0; int stime = 0; if (sscanf(&input.data()[i], "%d %d", &utime, &stime) != 2) return -1; return utime + stime; } } return -1; } int64_t GetNumberOfThreads(ProcessHandle process) { return internal::ReadProcStatsAndGetFieldAsInt64(process, internal::VM_NUMTHREADS); } const char kProcSelfExe[] = "/proc/self/exe"; namespace { // The format of /proc/diskstats is: // Device major number // Device minor number // Device name // Field 1 -- # of reads completed // This is the total number of reads completed successfully. // Field 2 -- # of reads merged, field 6 -- # of writes merged // Reads and writes which are adjacent to each other may be merged for // efficiency. Thus two 4K reads may become one 8K read before it is // ultimately handed to the disk, and so it will be counted (and queued) // as only one I/O. This field lets you know how often this was done. // Field 3 -- # of sectors read // This is the total number of sectors read successfully. // Field 4 -- # of milliseconds spent reading // This is the total number of milliseconds spent by all reads (as // measured from __make_request() to end_that_request_last()). // Field 5 -- # of writes completed // This is the total number of writes completed successfully. // Field 6 -- # of writes merged // See the description of field 2. // Field 7 -- # of sectors written // This is the total number of sectors written successfully. // Field 8 -- # of milliseconds spent writing // This is the total number of milliseconds spent by all writes (as // measured from __make_request() to end_that_request_last()). // Field 9 -- # of I/Os currently in progress // The only field that should go to zero. Incremented as requests are // given to appropriate struct request_queue and decremented as they // finish. // Field 10 -- # of milliseconds spent doing I/Os // This field increases so long as field 9 is nonzero. // Field 11 -- weighted # of milliseconds spent doing I/Os // This field is incremented at each I/O start, I/O completion, I/O // merge, or read of these stats by the number of I/Os in progress // (field 9) times the number of milliseconds spent doing I/O since the // last update of this field. This can provide an easy measure of both // I/O completion time and the backlog that may be accumulating. const size_t kDiskDriveName = 2; const size_t kDiskReads = 3; const size_t kDiskReadsMerged = 4; const size_t kDiskSectorsRead = 5; const size_t kDiskReadTime = 6; const size_t kDiskWrites = 7; const size_t kDiskWritesMerged = 8; const size_t kDiskSectorsWritten = 9; const size_t kDiskWriteTime = 10; const size_t kDiskIO = 11; const size_t kDiskIOTime = 12; const size_t kDiskWeightedIOTime = 13; } // namespace Value::Dict SystemMemoryInfoKB::ToDict() const { Value::Dict res; res.Set("total", total); res.Set("free", free); res.Set("available", available); res.Set("buffers", buffers); res.Set("cached", cached); res.Set("active_anon", active_anon); res.Set("inactive_anon", inactive_anon); res.Set("active_file", active_file); res.Set("inactive_file", inactive_file); res.Set("swap_total", swap_total); res.Set("swap_free", swap_free); res.Set("swap_used", swap_total - swap_free); res.Set("dirty", dirty); res.Set("reclaimable", reclaimable); #if BUILDFLAG(IS_CHROMEOS) res.Set("shmem", shmem); res.Set("slab", slab); #endif return res; } bool ParseProcMeminfo(std::string_view meminfo_data, SystemMemoryInfoKB* meminfo) { // The format of /proc/meminfo is: // // MemTotal: 8235324 kB // MemFree: 1628304 kB // Buffers: 429596 kB // Cached: 4728232 kB // ... // There is no guarantee on the ordering or position // though it doesn't appear to change very often // As a basic sanity check at the end, make sure the MemTotal value will be at // least non-zero. So start off with a zero total. meminfo->total = 0; for (std::string_view line : SplitStringPiece( meminfo_data, "\n", KEEP_WHITESPACE, SPLIT_WANT_NONEMPTY)) { std::vector tokens = SplitStringPiece( line, kWhitespaceASCII, TRIM_WHITESPACE, SPLIT_WANT_NONEMPTY); // HugePages_* only has a number and no suffix so there may not be exactly 3 // tokens. if (tokens.size() <= 1) { DLOG(WARNING) << "meminfo: tokens: " << tokens.size() << " malformed line: " << line; continue; } int* target = nullptr; if (tokens[0] == "MemTotal:") target = &meminfo->total; else if (tokens[0] == "MemFree:") target = &meminfo->free; else if (tokens[0] == "MemAvailable:") target = &meminfo->available; else if (tokens[0] == "Buffers:") target = &meminfo->buffers; else if (tokens[0] == "Cached:") target = &meminfo->cached; else if (tokens[0] == "Active(anon):") target = &meminfo->active_anon; else if (tokens[0] == "Inactive(anon):") target = &meminfo->inactive_anon; else if (tokens[0] == "Active(file):") target = &meminfo->active_file; else if (tokens[0] == "Inactive(file):") target = &meminfo->inactive_file; else if (tokens[0] == "SwapTotal:") target = &meminfo->swap_total; else if (tokens[0] == "SwapFree:") target = &meminfo->swap_free; else if (tokens[0] == "Dirty:") target = &meminfo->dirty; else if (tokens[0] == "SReclaimable:") target = &meminfo->reclaimable; #if BUILDFLAG(IS_CHROMEOS) // Chrome OS has a tweaked kernel that allows querying Shmem, which is // usually video memory otherwise invisible to the OS. else if (tokens[0] == "Shmem:") target = &meminfo->shmem; else if (tokens[0] == "Slab:") target = &meminfo->slab; #endif if (target) StringToInt(tokens[1], target); } // Make sure the MemTotal is valid. return meminfo->total > 0; } bool ParseProcVmstat(std::string_view vmstat_data, VmStatInfo* vmstat) { // The format of /proc/vmstat is: // // nr_free_pages 299878 // nr_inactive_anon 239863 // nr_active_anon 1318966 // nr_inactive_file 2015629 // ... // // Iterate through the whole file because the position of the // fields are dependent on the kernel version and configuration. // Returns true if all of these 3 fields are present. bool has_pswpin = false; bool has_pswpout = false; bool has_pgmajfault = false; // The oom_kill field is optional. The vmstat oom_kill field is available on // upstream kernel 4.13. It's backported to Chrome OS kernel 3.10. bool has_oom_kill = false; vmstat->oom_kill = 0; for (std::string_view line : SplitStringPiece( vmstat_data, "\n", KEEP_WHITESPACE, SPLIT_WANT_NONEMPTY)) { std::vector tokens = SplitStringPiece(line, " ", KEEP_WHITESPACE, SPLIT_WANT_NONEMPTY); if (tokens.size() != 2) continue; uint64_t val; if (!StringToUint64(tokens[1], &val)) continue; if (tokens[0] == "pswpin") { vmstat->pswpin = val; DCHECK(!has_pswpin); has_pswpin = true; } else if (tokens[0] == "pswpout") { vmstat->pswpout = val; DCHECK(!has_pswpout); has_pswpout = true; } else if (tokens[0] == "pgmajfault") { vmstat->pgmajfault = val; DCHECK(!has_pgmajfault); has_pgmajfault = true; } else if (tokens[0] == "oom_kill") { vmstat->oom_kill = val; DCHECK(!has_oom_kill); has_oom_kill = true; } } return has_pswpin && has_pswpout && has_pgmajfault; } bool GetSystemMemoryInfo(SystemMemoryInfoKB* meminfo) { // Used memory is: total - free - buffers - caches // ReadFileToStringNonBlocking doesn't require ScopedAllowIO, and reading // /proc/meminfo is fast. See crbug.com/1160988 for details. FilePath meminfo_file("/proc/meminfo"); std::string meminfo_data; if (!ReadFileToStringNonBlocking(meminfo_file, &meminfo_data)) { DLOG(WARNING) << "Failed to open " << meminfo_file.value(); return false; } if (!ParseProcMeminfo(meminfo_data, meminfo)) { DLOG(WARNING) << "Failed to parse " << meminfo_file.value(); return false; } return true; } Value::Dict VmStatInfo::ToDict() const { Value::Dict res; // TODO(crbug.com/1334256): Make base::Value able to hold uint64_t and remove // casts below. res.Set("pswpin", static_cast(pswpin)); res.Set("pswpout", static_cast(pswpout)); res.Set("pgmajfault", static_cast(pgmajfault)); return res; } bool GetVmStatInfo(VmStatInfo* vmstat) { // Synchronously reading files in /proc is safe. ScopedAllowBlockingForProcessMetrics allow_blocking; FilePath vmstat_file("/proc/vmstat"); std::string vmstat_data; if (!ReadFileToStringNonBlocking(vmstat_file, &vmstat_data)) { DLOG(WARNING) << "Failed to open " << vmstat_file.value(); return false; } if (!ParseProcVmstat(vmstat_data, vmstat)) { DLOG(WARNING) << "Failed to parse " << vmstat_file.value(); return false; } return true; } SystemDiskInfo::SystemDiskInfo() { reads = 0; reads_merged = 0; sectors_read = 0; read_time = 0; writes = 0; writes_merged = 0; sectors_written = 0; write_time = 0; io = 0; io_time = 0; weighted_io_time = 0; } SystemDiskInfo::SystemDiskInfo(const SystemDiskInfo&) = default; SystemDiskInfo& SystemDiskInfo::operator=(const SystemDiskInfo&) = default; Value::Dict SystemDiskInfo::ToDict() const { Value::Dict res; // Write out uint64_t variables as doubles. // Note: this may discard some precision, but for JS there's no other option. res.Set("reads", static_cast(reads)); res.Set("reads_merged", static_cast(reads_merged)); res.Set("sectors_read", static_cast(sectors_read)); res.Set("read_time", static_cast(read_time)); res.Set("writes", static_cast(writes)); res.Set("writes_merged", static_cast(writes_merged)); res.Set("sectors_written", static_cast(sectors_written)); res.Set("write_time", static_cast(write_time)); res.Set("io", static_cast(io)); res.Set("io_time", static_cast(io_time)); res.Set("weighted_io_time", static_cast(weighted_io_time)); return res; } bool IsValidDiskName(std::string_view candidate) { if (candidate.length() < 3) return false; if (candidate[1] == 'd' && (candidate[0] == 'h' || candidate[0] == 's' || candidate[0] == 'v')) { // [hsv]d[a-z]+ case for (size_t i = 2; i < candidate.length(); ++i) { if (!absl::ascii_islower(static_cast(candidate[i]))) { return false; } } return true; } const char kMMCName[] = "mmcblk"; if (!StartsWith(candidate, kMMCName)) return false; // mmcblk[0-9]+ case for (size_t i = strlen(kMMCName); i < candidate.length(); ++i) { if (!absl::ascii_isdigit(static_cast(candidate[i]))) { return false; } } return true; } bool GetSystemDiskInfo(SystemDiskInfo* diskinfo) { // Synchronously reading files in /proc does not hit the disk. ScopedAllowBlockingForProcessMetrics allow_blocking; FilePath diskinfo_file("/proc/diskstats"); std::string diskinfo_data; if (!ReadFileToStringNonBlocking(diskinfo_file, &diskinfo_data)) { DLOG(WARNING) << "Failed to open " << diskinfo_file.value(); return false; } std::vector diskinfo_lines = SplitStringPiece( diskinfo_data, "\n", KEEP_WHITESPACE, SPLIT_WANT_NONEMPTY); if (diskinfo_lines.empty()) { DLOG(WARNING) << "No lines found"; return false; } diskinfo->reads = 0; diskinfo->reads_merged = 0; diskinfo->sectors_read = 0; diskinfo->read_time = 0; diskinfo->writes = 0; diskinfo->writes_merged = 0; diskinfo->sectors_written = 0; diskinfo->write_time = 0; diskinfo->io = 0; diskinfo->io_time = 0; diskinfo->weighted_io_time = 0; uint64_t reads = 0; uint64_t reads_merged = 0; uint64_t sectors_read = 0; uint64_t read_time = 0; uint64_t writes = 0; uint64_t writes_merged = 0; uint64_t sectors_written = 0; uint64_t write_time = 0; uint64_t io = 0; uint64_t io_time = 0; uint64_t weighted_io_time = 0; for (std::string_view line : diskinfo_lines) { std::vector disk_fields = SplitStringPiece( line, kWhitespaceASCII, TRIM_WHITESPACE, SPLIT_WANT_NONEMPTY); // Fields may have overflowed and reset to zero. if (!IsValidDiskName(disk_fields[kDiskDriveName])) continue; StringToUint64(disk_fields[kDiskReads], &reads); StringToUint64(disk_fields[kDiskReadsMerged], &reads_merged); StringToUint64(disk_fields[kDiskSectorsRead], §ors_read); StringToUint64(disk_fields[kDiskReadTime], &read_time); StringToUint64(disk_fields[kDiskWrites], &writes); StringToUint64(disk_fields[kDiskWritesMerged], &writes_merged); StringToUint64(disk_fields[kDiskSectorsWritten], §ors_written); StringToUint64(disk_fields[kDiskWriteTime], &write_time); StringToUint64(disk_fields[kDiskIO], &io); StringToUint64(disk_fields[kDiskIOTime], &io_time); StringToUint64(disk_fields[kDiskWeightedIOTime], &weighted_io_time); diskinfo->reads += reads; diskinfo->reads_merged += reads_merged; diskinfo->sectors_read += sectors_read; diskinfo->read_time += read_time; diskinfo->writes += writes; diskinfo->writes_merged += writes_merged; diskinfo->sectors_written += sectors_written; diskinfo->write_time += write_time; diskinfo->io += io; diskinfo->io_time += io_time; diskinfo->weighted_io_time += weighted_io_time; } return true; } TimeDelta GetUserCpuTimeSinceBoot() { return internal::GetUserCpuTimeSinceBoot(); } #if BUILDFLAG(IS_CHROMEOS) Value::Dict SwapInfo::ToDict() const { Value::Dict res; // Write out uint64_t variables as doubles. // Note: this may discard some precision, but for JS there's no other option. res.Set("num_reads", static_cast(num_reads)); res.Set("num_writes", static_cast(num_writes)); res.Set("orig_data_size", static_cast(orig_data_size)); res.Set("compr_data_size", static_cast(compr_data_size)); res.Set("mem_used_total", static_cast(mem_used_total)); double ratio = compr_data_size ? static_cast(orig_data_size) / static_cast(compr_data_size) : 0; res.Set("compression_ratio", ratio); return res; } Value::Dict GraphicsMemoryInfoKB::ToDict() const { Value::Dict res; res.Set("gpu_objects", gpu_objects); res.Set("gpu_memory_size", static_cast(gpu_memory_size)); return res; } bool ParseZramMmStat(std::string_view mm_stat_data, SwapInfo* swap_info) { // There are 7 columns in /sys/block/zram0/mm_stat, // split by several spaces. The first three columns // are orig_data_size, compr_data_size and mem_used_total. // Example: // 17715200 5008166 566062 0 1225715712 127 183842 // // For more details: // https://www.kernel.org/doc/Documentation/blockdev/zram.txt std::vector tokens = SplitStringPiece( mm_stat_data, kWhitespaceASCII, TRIM_WHITESPACE, SPLIT_WANT_NONEMPTY); if (tokens.size() < 7) { DLOG(WARNING) << "zram mm_stat: tokens: " << tokens.size() << " malformed line: " << mm_stat_data; return false; } if (!StringToUint64(tokens[0], &swap_info->orig_data_size)) return false; if (!StringToUint64(tokens[1], &swap_info->compr_data_size)) return false; if (!StringToUint64(tokens[2], &swap_info->mem_used_total)) return false; return true; } bool ParseZramStat(std::string_view stat_data, SwapInfo* swap_info) { // There are 11 columns in /sys/block/zram0/stat, // split by several spaces. The first column is read I/Os // and fifth column is write I/Os. // Example: // 299 0 2392 0 1 0 8 0 0 0 0 // // For more details: // https://www.kernel.org/doc/Documentation/blockdev/zram.txt std::vector tokens = SplitStringPiece( stat_data, kWhitespaceASCII, TRIM_WHITESPACE, SPLIT_WANT_NONEMPTY); if (tokens.size() < 11) { DLOG(WARNING) << "zram stat: tokens: " << tokens.size() << " malformed line: " << stat_data; return false; } if (!StringToUint64(tokens[0], &swap_info->num_reads)) return false; if (!StringToUint64(tokens[4], &swap_info->num_writes)) return false; return true; } namespace { bool IgnoreZramFirstPage(uint64_t orig_data_size, SwapInfo* swap_info) { if (orig_data_size <= 4096) { // A single page is compressed at startup, and has a high compression // ratio. Ignore this as it doesn't indicate any real swapping. swap_info->orig_data_size = 0; swap_info->num_reads = 0; swap_info->num_writes = 0; swap_info->compr_data_size = 0; swap_info->mem_used_total = 0; return true; } return false; } void ParseZramPath(SwapInfo* swap_info) { FilePath zram_path("/sys/block/zram0"); uint64_t orig_data_size = ReadFileToUint64(zram_path.Append("orig_data_size")); if (IgnoreZramFirstPage(orig_data_size, swap_info)) return; swap_info->orig_data_size = orig_data_size; swap_info->num_reads = ReadFileToUint64(zram_path.Append("num_reads")); swap_info->num_writes = ReadFileToUint64(zram_path.Append("num_writes")); swap_info->compr_data_size = ReadFileToUint64(zram_path.Append("compr_data_size")); swap_info->mem_used_total = ReadFileToUint64(zram_path.Append("mem_used_total")); } bool GetSwapInfoImpl(SwapInfo* swap_info) { // Synchronously reading files in /sys/block/zram0 does not hit the disk. ScopedAllowBlockingForProcessMetrics allow_blocking; // Since ZRAM update, it shows the usage data in different places. // If file "/sys/block/zram0/mm_stat" exists, use the new way, otherwise, // use the old way. static std::optional use_new_zram_interface; FilePath zram_mm_stat_file("/sys/block/zram0/mm_stat"); if (!use_new_zram_interface.has_value()) { use_new_zram_interface = PathExists(zram_mm_stat_file); } if (!use_new_zram_interface.value()) { ParseZramPath(swap_info); return true; } std::string mm_stat_data; if (!ReadFileToStringNonBlocking(zram_mm_stat_file, &mm_stat_data)) { DLOG(WARNING) << "Failed to open " << zram_mm_stat_file.value(); return false; } if (!ParseZramMmStat(mm_stat_data, swap_info)) { DLOG(WARNING) << "Failed to parse " << zram_mm_stat_file.value(); return false; } if (IgnoreZramFirstPage(swap_info->orig_data_size, swap_info)) return true; FilePath zram_stat_file("/sys/block/zram0/stat"); std::string stat_data; if (!ReadFileToStringNonBlocking(zram_stat_file, &stat_data)) { DLOG(WARNING) << "Failed to open " << zram_stat_file.value(); return false; } if (!ParseZramStat(stat_data, swap_info)) { DLOG(WARNING) << "Failed to parse " << zram_stat_file.value(); return false; } return true; } } // namespace bool GetSwapInfo(SwapInfo* swap_info) { if (!GetSwapInfoImpl(swap_info)) { *swap_info = SwapInfo(); return false; } return true; } namespace { size_t ParseSize(const std::string& value) { size_t pos = value.find(' '); std::string base = value.substr(0, pos); std::string units = value.substr(pos + 1); size_t ret = 0; base::StringToSizeT(base, &ret); if (units == "KiB") { ret *= 1024; } else if (units == "MiB") { ret *= 1024 * 1024; } return ret; } struct DrmFdInfo { size_t memory_total; size_t memory_shared; }; void GetFdInfoFromPid(pid_t pid, std::map& fdinfo_table) { const FilePath pid_path = FilePath("/proc").AppendASCII(base::NumberToString(pid)); const FilePath fd_path = pid_path.AppendASCII("fd"); DirReaderPosix dir_reader(fd_path.value().c_str()); if (!dir_reader.IsValid()) { return; } for (; dir_reader.Next();) { const char* name = dir_reader.name(); if (strcmp(name, ".") == 0 || strcmp(name, "..") == 0) { continue; } struct stat stat; int err = fstatat(dir_reader.fd(), name, &stat, 0); if (err) { continue; } /* Skip fd's that are not drm device files: */ if (!S_ISCHR(stat.st_mode) || major(stat.st_rdev) != 226) { continue; } const FilePath fdinfo_path = pid_path.AppendASCII("fdinfo").AppendASCII(name); std::string fdinfo_data; if (!ReadFileToStringNonBlocking(fdinfo_path, &fdinfo_data)) { continue; } std::stringstream ss(fdinfo_data); std::string line; struct DrmFdInfo fdinfo = {}; unsigned int client_id = 0; while (std::getline(ss, line, '\n')) { size_t pos = line.find(':'); if (pos == std::string::npos) { continue; } std::string key = line.substr(0, pos); std::string value = line.substr(pos + 1); /* trim leading space from the value: */ value = value.substr(value.find_first_not_of(" \t")); if (key == "drm-client-id") { base::StringToUint(value, &client_id); } else if (key == "drm-total-memory") { fdinfo.memory_total = ParseSize(value); } else if (key == "drm-shared-memory") { fdinfo.memory_shared = ParseSize(value); } } /* The compositor only imports buffers.. so shared==total. Skip this * as it is not interesting: */ if (client_id && fdinfo.memory_shared != fdinfo.memory_total) { fdinfo_table[client_id] = fdinfo; } } } bool GetGraphicsMemoryInfoFdInfo(GraphicsMemoryInfoKB* gpu_meminfo) { // First parse clients file to get the tgid's of processes using the GPU // so that we don't need to parse *all* processes: const FilePath clients_path("/run/debugfs_gpu/clients"); std::string clients_data; std::map fdinfo_table; if (!ReadFileToStringNonBlocking(clients_path, &clients_data)) { return false; } // This has been the format since kernel commit: // 50d47cb318ed ("drm: Include task->name and master status in debugfs clients // info") // // comm pid dev master auth uid magic // %20s %5d %3d %c %c %5d %10u\n // // In practice comm rarely contains spaces, but it can in fact contain // any character. So we parse based on the 20 char limit (plus one // space): std::istringstream clients_stream(clients_data); std::string line; while (std::getline(clients_stream, line)) { pid_t pid; int num_res = sscanf(&line.c_str()[21], "%5d", &pid); if (num_res == 1) { GetFdInfoFromPid(pid, fdinfo_table); } } if (fdinfo_table.size() == 0) { return false; } gpu_meminfo->gpu_memory_size = 0; for (auto const& p : fdinfo_table) { gpu_meminfo->gpu_memory_size += p.second.memory_total; /* TODO it would be nice to also be able to report shared */ } return true; } } // namespace bool GetGraphicsMemoryInfo(GraphicsMemoryInfoKB* gpu_meminfo) { if (GetGraphicsMemoryInfoFdInfo(gpu_meminfo)) { return true; } #if defined(ARCH_CPU_X86_FAMILY) // Reading i915_gem_objects on intel platform with kernel 5.4 is slow and is // prohibited. // TODO(b/170397975): Update if i915_gem_objects reading time is improved. static bool is_newer_kernel = base::StartsWith(base::SysInfo::KernelVersion(), "5."); static bool is_intel_cpu = base::CPU().vendor_name() == "GenuineIntel"; if (is_newer_kernel && is_intel_cpu) return false; #endif #if defined(ARCH_CPU_ARM_FAMILY) const FilePath geminfo_path("/run/debugfs_gpu/exynos_gem_objects"); #else const FilePath geminfo_path("/run/debugfs_gpu/i915_gem_objects"); #endif std::string geminfo_data; gpu_meminfo->gpu_objects = -1; gpu_meminfo->gpu_memory_size = -1; if (ReadFileToStringNonBlocking(geminfo_path, &geminfo_data)) { int gpu_objects = -1; int64_t gpu_memory_size = -1; int num_res = sscanf(geminfo_data.c_str(), "%d objects, %" SCNd64 " bytes", &gpu_objects, &gpu_memory_size); if (num_res == 2) { gpu_meminfo->gpu_objects = gpu_objects; gpu_meminfo->gpu_memory_size = gpu_memory_size; } } #if defined(ARCH_CPU_ARM_FAMILY) // Incorporate Mali graphics memory if present. FilePath mali_memory_file("/sys/class/misc/mali0/device/memory"); std::string mali_memory_data; if (ReadFileToStringNonBlocking(mali_memory_file, &mali_memory_data)) { int64_t mali_size = -1; int num_res = sscanf(mali_memory_data.c_str(), "%" SCNd64 " bytes", &mali_size); if (num_res == 1) gpu_meminfo->gpu_memory_size += mali_size; } #endif // defined(ARCH_CPU_ARM_FAMILY) return gpu_meminfo->gpu_memory_size != -1; } #endif // BUILDFLAG(IS_CHROMEOS) #if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS) || BUILDFLAG(IS_AIX) int ProcessMetrics::GetIdleWakeupsPerSecond() { uint64_t num_switches; static const char kSwitchStat[] = "voluntary_ctxt_switches"; return internal::ReadProcStatusAndGetFieldAsUint64(process_, kSwitchStat, &num_switches) ? CalculateIdleWakeupsPerSecond(num_switches) : 0; } #endif // BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS) || BUILDFLAG(IS_AIX) } // namespace base