// Copyright 2023 The Chromium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/process/process_metrics.h" #include #include #include #include #include #include #include #include "base/apple/mach_logging.h" #include "base/apple/scoped_mach_port.h" #include "base/logging.h" #include "base/mac/mac_util.h" #include "base/memory/ptr_util.h" #include "base/notimplemented.h" #include "base/numerics/safe_math.h" #include "base/time/time.h" #include "base/types/expected.h" #include "build/build_config.h" #if BUILDFLAG(IS_MAC) #include #include #include #else #include #if BUILDFLAG(USE_BLINK) #include "base/ios/sim_header_shims.h" #endif // BUILDFLAG(USE_BLINK) #endif namespace base { #define TIME_VALUE_TO_TIMEVAL(a, r) \ do { \ (r)->tv_sec = (a)->seconds; \ (r)->tv_usec = (a)->microseconds; \ } while (0) namespace { base::expected GetTaskInfo( mach_port_t task) { if (task == MACH_PORT_NULL) { return base::unexpected(ProcessCPUUsageError::kProcessNotFound); } task_basic_info_64 task_info_data{}; mach_msg_type_number_t count = TASK_BASIC_INFO_64_COUNT; kern_return_t kr = task_info(task, TASK_BASIC_INFO_64, reinterpret_cast(&task_info_data), &count); // Most likely cause for failure: |task| is a zombie. if (kr != KERN_SUCCESS) { return base::unexpected(ProcessCPUUsageError::kSystemError); } return base::ok(task_info_data); } MachVMRegionResult ParseOutputFromMachVMRegion(kern_return_t kr) { if (kr == KERN_INVALID_ADDRESS) { // We're at the end of the address space. return MachVMRegionResult::Finished; } else if (kr != KERN_SUCCESS) { return MachVMRegionResult::Error; } return MachVMRegionResult::Success; } bool GetPowerInfo(mach_port_t task, task_power_info* power_info_data) { if (task == MACH_PORT_NULL) { return false; } mach_msg_type_number_t power_info_count = TASK_POWER_INFO_COUNT; kern_return_t kr = task_info(task, TASK_POWER_INFO, reinterpret_cast(power_info_data), &power_info_count); // Most likely cause for failure: |task| is a zombie. return kr == KERN_SUCCESS; } } // namespace // Implementations of ProcessMetrics class shared by Mac and iOS. mach_port_t ProcessMetrics::TaskForHandle(ProcessHandle process_handle) const { mach_port_t task = MACH_PORT_NULL; #if BUILDFLAG(IS_MAC) if (port_provider_) { task = port_provider_->TaskForHandle(process_); } #endif if (task == MACH_PORT_NULL && process_handle == getpid()) { task = mach_task_self(); } return task; } base::expected ProcessMetrics::GetCumulativeCPUUsage() { mach_port_t task = TaskForHandle(process_); if (task == MACH_PORT_NULL) { return base::unexpected(ProcessCPUUsageError::kProcessNotFound); } // Libtop explicitly loops over the threads (libtop_pinfo_update_cpu_usage() // in libtop.c), but this is more concise and gives the same results: task_thread_times_info thread_info_data; mach_msg_type_number_t thread_info_count = TASK_THREAD_TIMES_INFO_COUNT; kern_return_t kr = task_info(task, TASK_THREAD_TIMES_INFO, reinterpret_cast(&thread_info_data), &thread_info_count); if (kr != KERN_SUCCESS) { // Most likely cause: |task| is a zombie. return base::unexpected(ProcessCPUUsageError::kSystemError); } const base::expected task_info_data = GetTaskInfo(task); if (!task_info_data.has_value()) { return base::unexpected(task_info_data.error()); } /* Set total_time. */ // thread info contains live time... struct timeval user_timeval, system_timeval, task_timeval; TIME_VALUE_TO_TIMEVAL(&thread_info_data.user_time, &user_timeval); TIME_VALUE_TO_TIMEVAL(&thread_info_data.system_time, &system_timeval); timeradd(&user_timeval, &system_timeval, &task_timeval); // ... task info contains terminated time. TIME_VALUE_TO_TIMEVAL(&task_info_data->user_time, &user_timeval); TIME_VALUE_TO_TIMEVAL(&task_info_data->system_time, &system_timeval); timeradd(&user_timeval, &task_timeval, &task_timeval); timeradd(&system_timeval, &task_timeval, &task_timeval); const TimeDelta measured_cpu = Microseconds(TimeValToMicroseconds(task_timeval)); if (measured_cpu < last_measured_cpu_) { // When a thread terminates, its CPU time is immediately removed from the // running thread times returned by TASK_THREAD_TIMES_INFO, but there can be // a lag before it shows up in the terminated thread times returned by // GetTaskInfo(). Make sure CPU usage doesn't appear to go backwards if // GetCumulativeCPUUsage() is called in the interval. return base::ok(last_measured_cpu_); } last_measured_cpu_ = measured_cpu; return base::ok(measured_cpu); } int ProcessMetrics::GetPackageIdleWakeupsPerSecond() { mach_port_t task = TaskForHandle(process_); task_power_info power_info_data; GetPowerInfo(task, &power_info_data); // The task_power_info struct contains two wakeup counters: // task_interrupt_wakeups and task_platform_idle_wakeups. // task_interrupt_wakeups is the total number of wakeups generated by the // process, and is the number that Activity Monitor reports. // task_platform_idle_wakeups is a subset of task_interrupt_wakeups that // tallies the number of times the processor was taken out of its low-power // idle state to handle a wakeup. task_platform_idle_wakeups therefore result // in a greater power increase than the other interrupts which occur while the // CPU is already working, and reducing them has a greater overall impact on // power usage. See the powermetrics man page for more info. return CalculatePackageIdleWakeupsPerSecond( power_info_data.task_platform_idle_wakeups); } int ProcessMetrics::GetIdleWakeupsPerSecond() { mach_port_t task = TaskForHandle(process_); task_power_info power_info_data; GetPowerInfo(task, &power_info_data); return CalculateIdleWakeupsPerSecond(power_info_data.task_interrupt_wakeups); } // Bytes committed by the system. size_t GetSystemCommitCharge() { base::apple::ScopedMachSendRight host(mach_host_self()); mach_msg_type_number_t count = HOST_VM_INFO_COUNT; vm_statistics_data_t data; kern_return_t kr = host_statistics( host.get(), HOST_VM_INFO, reinterpret_cast(&data), &count); if (kr != KERN_SUCCESS) { MACH_DLOG(WARNING, kr) << "host_statistics"; return 0; } return (data.active_count * PAGE_SIZE) / 1024; } bool GetSystemMemoryInfo(SystemMemoryInfoKB* meminfo) { struct host_basic_info hostinfo; mach_msg_type_number_t count = HOST_BASIC_INFO_COUNT; base::apple::ScopedMachSendRight host(mach_host_self()); int result = host_info(host.get(), HOST_BASIC_INFO, reinterpret_cast(&hostinfo), &count); if (result != KERN_SUCCESS) { return false; } DCHECK_EQ(HOST_BASIC_INFO_COUNT, count); meminfo->total = static_cast(hostinfo.max_mem / 1024); vm_statistics64_data_t vm_info; count = HOST_VM_INFO64_COUNT; if (host_statistics64(host.get(), HOST_VM_INFO64, reinterpret_cast(&vm_info), &count) != KERN_SUCCESS) { return false; } DCHECK_EQ(HOST_VM_INFO64_COUNT, count); #if defined(ARCH_CPU_ARM64) || \ MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_16 // PAGE_SIZE is vm_page_size on arm or for deployment targets >= 10.16, // and vm_page_size isn't constexpr. DCHECK_EQ(PAGE_SIZE % 1024, 0u) << "Invalid page size"; #else static_assert(PAGE_SIZE % 1024 == 0, "Invalid page size"); #endif if (vm_info.speculative_count <= vm_info.free_count) { meminfo->free = saturated_cast( PAGE_SIZE / 1024 * (vm_info.free_count - vm_info.speculative_count)); } else { // Inside the `host_statistics64` call above, `speculative_count` is // computed later than `free_count`, so these values are snapshots of two // (slightly) different points in time. As a result, it is possible for // `speculative_count` to have increased significantly since `free_count` // was computed, even to a point where `speculative_count` is greater than // the computed value of `free_count`. See // https://github.com/apple-oss-distributions/xnu/blob/aca3beaa3dfbd42498b42c5e5ce20a938e6554e5/osfmk/kern/host.c#L788 // In this case, 0 is the best approximation for `meminfo->free`. This is // inexact, but even in the case where `speculative_count` is less than // `free_count`, the computed `meminfo->free` will only be an approximation // given that the two inputs come from different points in time. meminfo->free = 0; } meminfo->speculative = saturated_cast(PAGE_SIZE / 1024 * vm_info.speculative_count); meminfo->file_backed = saturated_cast(PAGE_SIZE / 1024 * vm_info.external_page_count); meminfo->purgeable = saturated_cast(PAGE_SIZE / 1024 * vm_info.purgeable_count); return true; } // Both |size| and |address| are in-out parameters. // |info| is an output parameter, only valid on Success. MachVMRegionResult GetTopInfo(mach_port_t task, mach_vm_size_t* size, mach_vm_address_t* address, vm_region_top_info_data_t* info) { mach_msg_type_number_t info_count = VM_REGION_TOP_INFO_COUNT; // The kernel always returns a null object for VM_REGION_TOP_INFO, but // balance it with a deallocate in case this ever changes. See 10.9.2 // xnu-2422.90.20/osfmk/vm/vm_map.c vm_map_region. apple::ScopedMachSendRight object_name; kern_return_t kr = #if BUILDFLAG(IS_MAC) mach_vm_region(task, address, size, VM_REGION_TOP_INFO, reinterpret_cast(info), &info_count, apple::ScopedMachSendRight::Receiver(object_name).get()); #else vm_region_64(task, reinterpret_cast(address), reinterpret_cast(size), VM_REGION_TOP_INFO, reinterpret_cast(info), &info_count, apple::ScopedMachSendRight::Receiver(object_name).get()); #endif return ParseOutputFromMachVMRegion(kr); } MachVMRegionResult GetBasicInfo(mach_port_t task, mach_vm_size_t* size, mach_vm_address_t* address, vm_region_basic_info_64* info) { mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT_64; // The kernel always returns a null object for VM_REGION_BASIC_INFO_64, but // balance it with a deallocate in case this ever changes. See 10.9.2 // xnu-2422.90.20/osfmk/vm/vm_map.c vm_map_region. apple::ScopedMachSendRight object_name; kern_return_t kr = #if BUILDFLAG(IS_MAC) mach_vm_region(task, address, size, VM_REGION_BASIC_INFO_64, reinterpret_cast(info), &info_count, apple::ScopedMachSendRight::Receiver(object_name).get()); #else vm_region_64(task, reinterpret_cast(address), reinterpret_cast(size), VM_REGION_BASIC_INFO_64, reinterpret_cast(info), &info_count, apple::ScopedMachSendRight::Receiver(object_name).get()); #endif return ParseOutputFromMachVMRegion(kr); } int ProcessMetrics::GetOpenFdCount() const { #if BUILDFLAG(USE_BLINK) // In order to get a true count of the open number of FDs, PROC_PIDLISTFDS // is used. This is done twice: first to get the appropriate size of a // buffer, and then secondly to fill the buffer with the actual FD info. // // The buffer size returned in the first call is an estimate, based on the // number of allocated fileproc structures in the kernel. This number can be // greater than the actual number of open files, since the structures are // allocated in slabs. The value returned in proc_bsdinfo::pbi_nfiles is // also the number of allocated fileprocs, not the number in use. // // However, the buffer size returned in the second call is an accurate count // of the open number of descriptors. The contents of the buffer are unused. int rv = proc_pidinfo(process_, PROC_PIDLISTFDS, 0, nullptr, 0); if (rv < 0) { return -1; } std::unique_ptr buffer(new char[static_cast(rv)]); rv = proc_pidinfo(process_, PROC_PIDLISTFDS, 0, buffer.get(), rv); if (rv < 0) { return -1; } return static_cast(static_cast(rv) / PROC_PIDLISTFD_SIZE); #else NOTIMPLEMENTED_LOG_ONCE(); return -1; #endif // BUILDFLAG(USE_BLINK) } int ProcessMetrics::GetOpenFdSoftLimit() const { return checked_cast(GetMaxFds()); } } // namespace base