/* Copyright (c) 2023, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #define OPENSSL_UNSTABLE_EXPERIMENTAL_KYBER #include #include #include #include #include #include "../internal.h" #include "../keccak/internal.h" #include "./internal.h" // See // https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf static void prf(uint8_t *out, size_t out_len, const uint8_t in[33]) { BORINGSSL_keccak(out, out_len, in, 33, boringssl_shake256); } static void hash_h(uint8_t out[32], const uint8_t *in, size_t len) { BORINGSSL_keccak(out, 32, in, len, boringssl_sha3_256); } static void hash_g(uint8_t out[64], const uint8_t *in, size_t len) { BORINGSSL_keccak(out, 64, in, len, boringssl_sha3_512); } static void kdf(uint8_t *out, size_t out_len, const uint8_t *in, size_t len) { BORINGSSL_keccak(out, out_len, in, len, boringssl_shake256); } #define DEGREE 256 #define RANK 3 static const size_t kBarrettMultiplier = 5039; static const unsigned kBarrettShift = 24; static const uint16_t kPrime = 3329; static const int kLog2Prime = 12; static const uint16_t kHalfPrime = (/*kPrime=*/3329 - 1) / 2; static const int kDU = 10; static const int kDV = 4; // kInverseDegree is 128^-1 mod 3329; 128 because kPrime does not have a 512th // root of unity. static const uint16_t kInverseDegree = 3303; static const size_t kEncodedVectorSize = (/*kLog2Prime=*/12 * DEGREE / 8) * RANK; static const size_t kCompressedVectorSize = /*kDU=*/10 * RANK * DEGREE / 8; typedef struct scalar { // On every function entry and exit, 0 <= c < kPrime. uint16_t c[DEGREE]; } scalar; typedef struct vector { scalar v[RANK]; } vector; typedef struct matrix { scalar v[RANK][RANK]; } matrix; // This bit of Python will be referenced in some of the following comments: // // p = 3329 // // def bitreverse(i): // ret = 0 // for n in range(7): // bit = i & 1 // ret <<= 1 // ret |= bit // i >>= 1 // return ret // kNTTRoots = [pow(17, bitreverse(i), p) for i in range(128)] static const uint16_t kNTTRoots[128] = { 1, 1729, 2580, 3289, 2642, 630, 1897, 848, 1062, 1919, 193, 797, 2786, 3260, 569, 1746, 296, 2447, 1339, 1476, 3046, 56, 2240, 1333, 1426, 2094, 535, 2882, 2393, 2879, 1974, 821, 289, 331, 3253, 1756, 1197, 2304, 2277, 2055, 650, 1977, 2513, 632, 2865, 33, 1320, 1915, 2319, 1435, 807, 452, 1438, 2868, 1534, 2402, 2647, 2617, 1481, 648, 2474, 3110, 1227, 910, 17, 2761, 583, 2649, 1637, 723, 2288, 1100, 1409, 2662, 3281, 233, 756, 2156, 3015, 3050, 1703, 1651, 2789, 1789, 1847, 952, 1461, 2687, 939, 2308, 2437, 2388, 733, 2337, 268, 641, 1584, 2298, 2037, 3220, 375, 2549, 2090, 1645, 1063, 319, 2773, 757, 2099, 561, 2466, 2594, 2804, 1092, 403, 1026, 1143, 2150, 2775, 886, 1722, 1212, 1874, 1029, 2110, 2935, 885, 2154, }; // kInverseNTTRoots = [pow(17, -bitreverse(i), p) for i in range(128)] static const uint16_t kInverseNTTRoots[128] = { 1, 1600, 40, 749, 2481, 1432, 2699, 687, 1583, 2760, 69, 543, 2532, 3136, 1410, 2267, 2508, 1355, 450, 936, 447, 2794, 1235, 1903, 1996, 1089, 3273, 283, 1853, 1990, 882, 3033, 2419, 2102, 219, 855, 2681, 1848, 712, 682, 927, 1795, 461, 1891, 2877, 2522, 1894, 1010, 1414, 2009, 3296, 464, 2697, 816, 1352, 2679, 1274, 1052, 1025, 2132, 1573, 76, 2998, 3040, 1175, 2444, 394, 1219, 2300, 1455, 2117, 1607, 2443, 554, 1179, 2186, 2303, 2926, 2237, 525, 735, 863, 2768, 1230, 2572, 556, 3010, 2266, 1684, 1239, 780, 2954, 109, 1292, 1031, 1745, 2688, 3061, 992, 2596, 941, 892, 1021, 2390, 642, 1868, 2377, 1482, 1540, 540, 1678, 1626, 279, 314, 1173, 2573, 3096, 48, 667, 1920, 2229, 1041, 2606, 1692, 680, 2746, 568, 3312, }; // kModRoots = [pow(17, 2*bitreverse(i) + 1, p) for i in range(128)] static const uint16_t kModRoots[128] = { 17, 3312, 2761, 568, 583, 2746, 2649, 680, 1637, 1692, 723, 2606, 2288, 1041, 1100, 2229, 1409, 1920, 2662, 667, 3281, 48, 233, 3096, 756, 2573, 2156, 1173, 3015, 314, 3050, 279, 1703, 1626, 1651, 1678, 2789, 540, 1789, 1540, 1847, 1482, 952, 2377, 1461, 1868, 2687, 642, 939, 2390, 2308, 1021, 2437, 892, 2388, 941, 733, 2596, 2337, 992, 268, 3061, 641, 2688, 1584, 1745, 2298, 1031, 2037, 1292, 3220, 109, 375, 2954, 2549, 780, 2090, 1239, 1645, 1684, 1063, 2266, 319, 3010, 2773, 556, 757, 2572, 2099, 1230, 561, 2768, 2466, 863, 2594, 735, 2804, 525, 1092, 2237, 403, 2926, 1026, 2303, 1143, 2186, 2150, 1179, 2775, 554, 886, 2443, 1722, 1607, 1212, 2117, 1874, 1455, 1029, 2300, 2110, 1219, 2935, 394, 885, 2444, 2154, 1175, }; // reduce_once reduces 0 <= x < 2*kPrime, mod kPrime. static uint16_t reduce_once(uint16_t x) { assert(x < 2 * kPrime); const uint16_t subtracted = x - kPrime; uint16_t mask = 0u - (subtracted >> 15); // On Aarch64, omitting a |value_barrier_u16| results in a 2x speedup of Kyber // overall and Clang still produces constant-time code using `csel`. On other // platforms & compilers on godbolt that we care about, this code also // produces constant-time output. return (mask & x) | (~mask & subtracted); } // constant time reduce x mod kPrime using Barrett reduction. x must be less // than kPrime + 2×kPrime². static uint16_t reduce(uint32_t x) { assert(x < kPrime + 2u * kPrime * kPrime); uint64_t product = (uint64_t)x * kBarrettMultiplier; uint32_t quotient = (uint32_t)(product >> kBarrettShift); uint32_t remainder = x - quotient * kPrime; return reduce_once(remainder); } static void scalar_zero(scalar *out) { OPENSSL_memset(out, 0, sizeof(*out)); } static void vector_zero(vector *out) { OPENSSL_memset(out, 0, sizeof(*out)); } // In place number theoretic transform of a given scalar. // Note that Kyber's kPrime 3329 does not have a 512th root of unity, so this // transform leaves off the last iteration of the usual FFT code, with the 128 // relevant roots of unity being stored in |kNTTRoots|. This means the output // should be seen as 128 elements in GF(3329^2), with the coefficients of the // elements being consecutive entries in |s->c|. static void scalar_ntt(scalar *s) { int offset = DEGREE; // `int` is used here because using `size_t` throughout caused a ~5% slowdown // with Clang 14 on Aarch64. for (int step = 1; step < DEGREE / 2; step <<= 1) { offset >>= 1; int k = 0; for (int i = 0; i < step; i++) { const uint32_t step_root = kNTTRoots[i + step]; for (int j = k; j < k + offset; j++) { uint16_t odd = reduce(step_root * s->c[j + offset]); uint16_t even = s->c[j]; s->c[j] = reduce_once(odd + even); s->c[j + offset] = reduce_once(even - odd + kPrime); } k += 2 * offset; } } } static void vector_ntt(vector *a) { for (int i = 0; i < RANK; i++) { scalar_ntt(&a->v[i]); } } // In place inverse number theoretic transform of a given scalar, with pairs of // entries of s->v being interpreted as elements of GF(3329^2). Just as with the // number theoretic transform, this leaves off the first step of the normal iFFT // to account for the fact that 3329 does not have a 512th root of unity, using // the precomputed 128 roots of unity stored in |kInverseNTTRoots|. static void scalar_inverse_ntt(scalar *s) { int step = DEGREE / 2; // `int` is used here because using `size_t` throughout caused a ~5% slowdown // with Clang 14 on Aarch64. for (int offset = 2; offset < DEGREE; offset <<= 1) { step >>= 1; int k = 0; for (int i = 0; i < step; i++) { uint32_t step_root = kInverseNTTRoots[i + step]; for (int j = k; j < k + offset; j++) { uint16_t odd = s->c[j + offset]; uint16_t even = s->c[j]; s->c[j] = reduce_once(odd + even); s->c[j + offset] = reduce(step_root * (even - odd + kPrime)); } k += 2 * offset; } } for (int i = 0; i < DEGREE; i++) { s->c[i] = reduce(s->c[i] * kInverseDegree); } } static void vector_inverse_ntt(vector *a) { for (int i = 0; i < RANK; i++) { scalar_inverse_ntt(&a->v[i]); } } static void scalar_add(scalar *lhs, const scalar *rhs) { for (int i = 0; i < DEGREE; i++) { lhs->c[i] = reduce_once(lhs->c[i] + rhs->c[i]); } } static void scalar_sub(scalar *lhs, const scalar *rhs) { for (int i = 0; i < DEGREE; i++) { lhs->c[i] = reduce_once(lhs->c[i] - rhs->c[i] + kPrime); } } // Multiplying two scalars in the number theoretically transformed state. Since // 3329 does not have a 512th root of unity, this means we have to interpret // the 2*ith and (2*i+1)th entries of the scalar as elements of GF(3329)[X]/(X^2 // - 17^(2*bitreverse(i)+1)) The value of 17^(2*bitreverse(i)+1) mod 3329 is // stored in the precomputed |kModRoots| table. Note that our Barrett transform // only allows us to multipy two reduced numbers together, so we need some // intermediate reduction steps, even if an uint64_t could hold 3 multiplied // numbers. static void scalar_mult(scalar *out, const scalar *lhs, const scalar *rhs) { for (int i = 0; i < DEGREE / 2; i++) { uint32_t real_real = (uint32_t)lhs->c[2 * i] * rhs->c[2 * i]; uint32_t img_img = (uint32_t)lhs->c[2 * i + 1] * rhs->c[2 * i + 1]; uint32_t real_img = (uint32_t)lhs->c[2 * i] * rhs->c[2 * i + 1]; uint32_t img_real = (uint32_t)lhs->c[2 * i + 1] * rhs->c[2 * i]; out->c[2 * i] = reduce(real_real + (uint32_t)reduce(img_img) * kModRoots[i]); out->c[2 * i + 1] = reduce(img_real + real_img); } } static void vector_add(vector *lhs, const vector *rhs) { for (int i = 0; i < RANK; i++) { scalar_add(&lhs->v[i], &rhs->v[i]); } } static void matrix_mult(vector *out, const matrix *m, const vector *a) { vector_zero(out); for (int i = 0; i < RANK; i++) { for (int j = 0; j < RANK; j++) { scalar product; scalar_mult(&product, &m->v[i][j], &a->v[j]); scalar_add(&out->v[i], &product); } } } static void matrix_mult_transpose(vector *out, const matrix *m, const vector *a) { vector_zero(out); for (int i = 0; i < RANK; i++) { for (int j = 0; j < RANK; j++) { scalar product; scalar_mult(&product, &m->v[j][i], &a->v[j]); scalar_add(&out->v[i], &product); } } } static void scalar_inner_product(scalar *out, const vector *lhs, const vector *rhs) { scalar_zero(out); for (int i = 0; i < RANK; i++) { scalar product; scalar_mult(&product, &lhs->v[i], &rhs->v[i]); scalar_add(out, &product); } } // Algorithm 1 of the Kyber spec. Rejection samples a Keccak stream to get // uniformly distributed elements. This is used for matrix expansion and only // operates on public inputs. static void scalar_from_keccak_vartime(scalar *out, struct BORINGSSL_keccak_st *keccak_ctx) { assert(keccak_ctx->squeeze_offset == 0); assert(keccak_ctx->rate_bytes == 168); static_assert(168 % 3 == 0, "block and coefficient boundaries do not align"); int done = 0; while (done < DEGREE) { uint8_t block[168]; BORINGSSL_keccak_squeeze(keccak_ctx, block, sizeof(block)); for (size_t i = 0; i < sizeof(block) && done < DEGREE; i += 3) { uint16_t d1 = block[i] + 256 * (block[i + 1] % 16); uint16_t d2 = block[i + 1] / 16 + 16 * block[i + 2]; if (d1 < kPrime) { out->c[done++] = d1; } if (d2 < kPrime && done < DEGREE) { out->c[done++] = d2; } } } } // Algorithm 2 of the Kyber spec, with eta fixed to two and the PRF call // included. Creates binominally distributed elements by sampling 2*|eta| bits, // and setting the coefficient to the count of the first bits minus the count of // the second bits, resulting in a centered binomial distribution. Since eta is // two this gives -2/2 with a probability of 1/16, -1/1 with probability 1/4, // and 0 with probability 3/8. static void scalar_centered_binomial_distribution_eta_2_with_prf( scalar *out, const uint8_t input[33]) { uint8_t entropy[128]; static_assert(sizeof(entropy) == 2 * /*kEta=*/2 * DEGREE / 8, ""); prf(entropy, sizeof(entropy), input); for (int i = 0; i < DEGREE; i += 2) { uint8_t byte = entropy[i / 2]; uint16_t value = kPrime; value += (byte & 1) + ((byte >> 1) & 1); value -= ((byte >> 2) & 1) + ((byte >> 3) & 1); out->c[i] = reduce_once(value); byte >>= 4; value = kPrime; value += (byte & 1) + ((byte >> 1) & 1); value -= ((byte >> 2) & 1) + ((byte >> 3) & 1); out->c[i + 1] = reduce_once(value); } } // Generates a secret vector by using // |scalar_centered_binomial_distribution_eta_2_with_prf|, using the given seed // appending and incrementing |counter| for entry of the vector. static void vector_generate_secret_eta_2(vector *out, uint8_t *counter, const uint8_t seed[32]) { uint8_t input[33]; OPENSSL_memcpy(input, seed, 32); for (int i = 0; i < RANK; i++) { input[32] = (*counter)++; scalar_centered_binomial_distribution_eta_2_with_prf(&out->v[i], input); } } // Expands the matrix of a seed for key generation and for encaps-CPA. static void matrix_expand(matrix *out, const uint8_t rho[32]) { uint8_t input[34]; OPENSSL_memcpy(input, rho, 32); for (int i = 0; i < RANK; i++) { for (int j = 0; j < RANK; j++) { input[32] = i; input[33] = j; struct BORINGSSL_keccak_st keccak_ctx; BORINGSSL_keccak_init(&keccak_ctx, boringssl_shake128); BORINGSSL_keccak_absorb(&keccak_ctx, input, sizeof(input)); scalar_from_keccak_vartime(&out->v[i][j], &keccak_ctx); } } } static const uint8_t kMasks[8] = {0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff}; static void scalar_encode(uint8_t *out, const scalar *s, int bits) { assert(bits <= (int)sizeof(*s->c) * 8 && bits != 1); uint8_t out_byte = 0; int out_byte_bits = 0; for (int i = 0; i < DEGREE; i++) { uint16_t element = s->c[i]; int element_bits_done = 0; while (element_bits_done < bits) { int chunk_bits = bits - element_bits_done; int out_bits_remaining = 8 - out_byte_bits; if (chunk_bits >= out_bits_remaining) { chunk_bits = out_bits_remaining; out_byte |= (element & kMasks[chunk_bits - 1]) << out_byte_bits; *out = out_byte; out++; out_byte_bits = 0; out_byte = 0; } else { out_byte |= (element & kMasks[chunk_bits - 1]) << out_byte_bits; out_byte_bits += chunk_bits; } element_bits_done += chunk_bits; element >>= chunk_bits; } } if (out_byte_bits > 0) { *out = out_byte; } } // scalar_encode_1 is |scalar_encode| specialised for |bits| == 1. static void scalar_encode_1(uint8_t out[32], const scalar *s) { for (int i = 0; i < DEGREE; i += 8) { uint8_t out_byte = 0; for (int j = 0; j < 8; j++) { out_byte |= (s->c[i + j] & 1) << j; } *out = out_byte; out++; } } // Encodes an entire vector into 32*|RANK|*|bits| bytes. Note that since 256 // (DEGREE) is divisible by 8, the individual vector entries will always fill a // whole number of bytes, so we do not need to worry about bit packing here. static void vector_encode(uint8_t *out, const vector *a, int bits) { for (int i = 0; i < RANK; i++) { scalar_encode(out + i * bits * DEGREE / 8, &a->v[i], bits); } } // scalar_decode parses |DEGREE * bits| bits from |in| into |DEGREE| values in // |out|. It returns one on success and zero if any parsed value is >= // |kPrime|. static int scalar_decode(scalar *out, const uint8_t *in, int bits) { assert(bits <= (int)sizeof(*out->c) * 8 && bits != 1); uint8_t in_byte = 0; int in_byte_bits_left = 0; for (int i = 0; i < DEGREE; i++) { uint16_t element = 0; int element_bits_done = 0; while (element_bits_done < bits) { if (in_byte_bits_left == 0) { in_byte = *in; in++; in_byte_bits_left = 8; } int chunk_bits = bits - element_bits_done; if (chunk_bits > in_byte_bits_left) { chunk_bits = in_byte_bits_left; } element |= (in_byte & kMasks[chunk_bits - 1]) << element_bits_done; in_byte_bits_left -= chunk_bits; in_byte >>= chunk_bits; element_bits_done += chunk_bits; } if (element >= kPrime) { return 0; } out->c[i] = element; } return 1; } // scalar_decode_1 is |scalar_decode| specialised for |bits| == 1. static void scalar_decode_1(scalar *out, const uint8_t in[32]) { for (int i = 0; i < DEGREE; i += 8) { uint8_t in_byte = *in; in++; for (int j = 0; j < 8; j++) { out->c[i + j] = in_byte & 1; in_byte >>= 1; } } } // Decodes 32*|RANK|*|bits| bytes from |in| into |out|. It returns one on // success or zero if any parsed value is >= |kPrime|. static int vector_decode(vector *out, const uint8_t *in, int bits) { for (int i = 0; i < RANK; i++) { if (!scalar_decode(&out->v[i], in + i * bits * DEGREE / 8, bits)) { return 0; } } return 1; } // Compresses (lossily) an input |x| mod 3329 into |bits| many bits by grouping // numbers close to each other together. The formula used is // round(2^|bits|/kPrime*x) mod 2^|bits|. // Uses Barrett reduction to achieve constant time. Since we need both the // remainder (for rounding) and the quotient (as the result), we cannot use // |reduce| here, but need to do the Barrett reduction directly. static uint16_t compress(uint16_t x, int bits) { uint32_t shifted = (uint32_t)x << bits; uint64_t product = (uint64_t)shifted * kBarrettMultiplier; uint32_t quotient = (uint32_t)(product >> kBarrettShift); uint32_t remainder = shifted - quotient * kPrime; // Adjust the quotient to round correctly: // 0 <= remainder <= kHalfPrime round to 0 // kHalfPrime < remainder <= kPrime + kHalfPrime round to 1 // kPrime + kHalfPrime < remainder < 2 * kPrime round to 2 assert(remainder < 2u * kPrime); quotient += 1 & constant_time_lt_w(kHalfPrime, remainder); quotient += 1 & constant_time_lt_w(kPrime + kHalfPrime, remainder); return quotient & ((1 << bits) - 1); } // Decompresses |x| by using an equi-distant representative. The formula is // round(kPrime/2^|bits|*x). Note that 2^|bits| being the divisor allows us to // implement this logic using only bit operations. static uint16_t decompress(uint16_t x, int bits) { uint32_t product = (uint32_t)x * kPrime; uint32_t power = 1 << bits; // This is |product| % power, since |power| is a power of 2. uint32_t remainder = product & (power - 1); // This is |product| / power, since |power| is a power of 2. uint32_t lower = product >> bits; // The rounding logic works since the first half of numbers mod |power| have a // 0 as first bit, and the second half has a 1 as first bit, since |power| is // a power of 2. As a 12 bit number, |remainder| is always positive, so we // will shift in 0s for a right shift. return lower + (remainder >> (bits - 1)); } static void scalar_compress(scalar *s, int bits) { for (int i = 0; i < DEGREE; i++) { s->c[i] = compress(s->c[i], bits); } } static void scalar_decompress(scalar *s, int bits) { for (int i = 0; i < DEGREE; i++) { s->c[i] = decompress(s->c[i], bits); } } static void vector_compress(vector *a, int bits) { for (int i = 0; i < RANK; i++) { scalar_compress(&a->v[i], bits); } } static void vector_decompress(vector *a, int bits) { for (int i = 0; i < RANK; i++) { scalar_decompress(&a->v[i], bits); } } struct public_key { vector t; uint8_t rho[32]; uint8_t public_key_hash[32]; matrix m; }; static struct public_key *public_key_from_external( const struct KYBER_public_key *external) { static_assert(sizeof(struct KYBER_public_key) >= sizeof(struct public_key), "Kyber public key is too small"); static_assert(alignof(struct KYBER_public_key) >= alignof(struct public_key), "Kyber public key align incorrect"); return (struct public_key *)external; } struct private_key { struct public_key pub; vector s; uint8_t fo_failure_secret[32]; }; static struct private_key *private_key_from_external( const struct KYBER_private_key *external) { static_assert(sizeof(struct KYBER_private_key) >= sizeof(struct private_key), "Kyber private key too small"); static_assert( alignof(struct KYBER_private_key) >= alignof(struct private_key), "Kyber private key align incorrect"); return (struct private_key *)external; } // Calls |KYBER_generate_key_external_entropy| with random bytes from // |RAND_bytes|. void KYBER_generate_key(uint8_t out_encoded_public_key[KYBER_PUBLIC_KEY_BYTES], struct KYBER_private_key *out_private_key) { uint8_t entropy[KYBER_GENERATE_KEY_ENTROPY]; RAND_bytes(entropy, sizeof(entropy)); KYBER_generate_key_external_entropy(out_encoded_public_key, out_private_key, entropy); } static int kyber_marshal_public_key(CBB *out, const struct public_key *pub) { uint8_t *vector_output; if (!CBB_add_space(out, &vector_output, kEncodedVectorSize)) { return 0; } vector_encode(vector_output, &pub->t, kLog2Prime); if (!CBB_add_bytes(out, pub->rho, sizeof(pub->rho))) { return 0; } return 1; } // Algorithms 4 and 7 of the Kyber spec. Algorithms are combined since key // generation is not part of the FO transform, and the spec uses Algorithm 7 to // specify the actual key format. void KYBER_generate_key_external_entropy( uint8_t out_encoded_public_key[KYBER_PUBLIC_KEY_BYTES], struct KYBER_private_key *out_private_key, const uint8_t entropy[KYBER_GENERATE_KEY_ENTROPY]) { struct private_key *priv = private_key_from_external(out_private_key); uint8_t hashed[64]; hash_g(hashed, entropy, 32); const uint8_t *const rho = hashed; const uint8_t *const sigma = hashed + 32; OPENSSL_memcpy(priv->pub.rho, hashed, sizeof(priv->pub.rho)); matrix_expand(&priv->pub.m, rho); uint8_t counter = 0; vector_generate_secret_eta_2(&priv->s, &counter, sigma); vector_ntt(&priv->s); vector error; vector_generate_secret_eta_2(&error, &counter, sigma); vector_ntt(&error); matrix_mult_transpose(&priv->pub.t, &priv->pub.m, &priv->s); vector_add(&priv->pub.t, &error); CBB cbb; CBB_init_fixed(&cbb, out_encoded_public_key, KYBER_PUBLIC_KEY_BYTES); if (!kyber_marshal_public_key(&cbb, &priv->pub)) { abort(); } hash_h(priv->pub.public_key_hash, out_encoded_public_key, KYBER_PUBLIC_KEY_BYTES); OPENSSL_memcpy(priv->fo_failure_secret, entropy + 32, 32); } void KYBER_public_from_private(struct KYBER_public_key *out_public_key, const struct KYBER_private_key *private_key) { struct public_key *const pub = public_key_from_external(out_public_key); const struct private_key *const priv = private_key_from_external(private_key); *pub = priv->pub; } // Algorithm 5 of the Kyber spec. Encrypts a message with given randomness to // the ciphertext in |out|. Without applying the Fujisaki-Okamoto transform this // would not result in a CCA secure scheme, since lattice schemes are vulnerable // to decryption failure oracles. static void encrypt_cpa(uint8_t out[KYBER_CIPHERTEXT_BYTES], const struct public_key *pub, const uint8_t message[32], const uint8_t randomness[32]) { uint8_t counter = 0; vector secret; vector_generate_secret_eta_2(&secret, &counter, randomness); vector_ntt(&secret); vector error; vector_generate_secret_eta_2(&error, &counter, randomness); uint8_t input[33]; OPENSSL_memcpy(input, randomness, 32); input[32] = counter; scalar scalar_error; scalar_centered_binomial_distribution_eta_2_with_prf(&scalar_error, input); vector u; matrix_mult(&u, &pub->m, &secret); vector_inverse_ntt(&u); vector_add(&u, &error); scalar v; scalar_inner_product(&v, &pub->t, &secret); scalar_inverse_ntt(&v); scalar_add(&v, &scalar_error); scalar expanded_message; scalar_decode_1(&expanded_message, message); scalar_decompress(&expanded_message, 1); scalar_add(&v, &expanded_message); vector_compress(&u, kDU); vector_encode(out, &u, kDU); scalar_compress(&v, kDV); scalar_encode(out + kCompressedVectorSize, &v, kDV); } // Calls KYBER_encap_external_entropy| with random bytes from |RAND_bytes| void KYBER_encap(uint8_t out_ciphertext[KYBER_CIPHERTEXT_BYTES], uint8_t out_shared_secret[KYBER_SHARED_SECRET_BYTES], const struct KYBER_public_key *public_key) { uint8_t entropy[KYBER_ENCAP_ENTROPY]; RAND_bytes(entropy, KYBER_ENCAP_ENTROPY); KYBER_encap_external_entropy(out_ciphertext, out_shared_secret, public_key, entropy); } // Algorithm 8 of the Kyber spec, safe for line 2 of the spec. The spec there // hashes the output of the system's random number generator, since the FO // transform will reveal it to the decrypting party. There is no reason to do // this when a secure random number generator is used. When an insecure random // number generator is used, the caller should switch to a secure one before // calling this method. void KYBER_encap_external_entropy( uint8_t out_ciphertext[KYBER_CIPHERTEXT_BYTES], uint8_t out_shared_secret[KYBER_SHARED_SECRET_BYTES], const struct KYBER_public_key *public_key, const uint8_t entropy[KYBER_ENCAP_ENTROPY]) { const struct public_key *pub = public_key_from_external(public_key); uint8_t input[64]; OPENSSL_memcpy(input, entropy, KYBER_ENCAP_ENTROPY); OPENSSL_memcpy(input + KYBER_ENCAP_ENTROPY, pub->public_key_hash, sizeof(input) - KYBER_ENCAP_ENTROPY); uint8_t prekey_and_randomness[64]; hash_g(prekey_and_randomness, input, sizeof(input)); encrypt_cpa(out_ciphertext, pub, entropy, prekey_and_randomness + 32); hash_h(prekey_and_randomness + 32, out_ciphertext, KYBER_CIPHERTEXT_BYTES); kdf(out_shared_secret, KYBER_SHARED_SECRET_BYTES, prekey_and_randomness, sizeof(prekey_and_randomness)); } // Algorithm 6 of the Kyber spec. static void decrypt_cpa(uint8_t out[32], const struct private_key *priv, const uint8_t ciphertext[KYBER_CIPHERTEXT_BYTES]) { vector u; vector_decode(&u, ciphertext, kDU); vector_decompress(&u, kDU); vector_ntt(&u); scalar v; scalar_decode(&v, ciphertext + kCompressedVectorSize, kDV); scalar_decompress(&v, kDV); scalar mask; scalar_inner_product(&mask, &priv->s, &u); scalar_inverse_ntt(&mask); scalar_sub(&v, &mask); scalar_compress(&v, 1); scalar_encode_1(out, &v); } // Algorithm 9 of the Kyber spec, performing the FO transform by running // encrypt_cpa on the decrypted message. The spec does not allow the decryption // failure to be passed on to the caller, and instead returns a result that is // deterministic but unpredictable to anyone without knowledge of the private // key. void KYBER_decap(uint8_t out_shared_secret[KYBER_SHARED_SECRET_BYTES], const uint8_t ciphertext[KYBER_CIPHERTEXT_BYTES], const struct KYBER_private_key *private_key) { const struct private_key *priv = private_key_from_external(private_key); uint8_t decrypted[64]; decrypt_cpa(decrypted, priv, ciphertext); OPENSSL_memcpy(decrypted + 32, priv->pub.public_key_hash, sizeof(decrypted) - 32); uint8_t prekey_and_randomness[64]; hash_g(prekey_and_randomness, decrypted, sizeof(decrypted)); uint8_t expected_ciphertext[KYBER_CIPHERTEXT_BYTES]; encrypt_cpa(expected_ciphertext, &priv->pub, decrypted, prekey_and_randomness + 32); uint8_t mask = constant_time_eq_int_8(CRYPTO_memcmp(ciphertext, expected_ciphertext, sizeof(expected_ciphertext)), 0); uint8_t input[64]; for (int i = 0; i < 32; i++) { input[i] = constant_time_select_8(mask, prekey_and_randomness[i], priv->fo_failure_secret[i]); } hash_h(input + 32, ciphertext, KYBER_CIPHERTEXT_BYTES); kdf(out_shared_secret, KYBER_SHARED_SECRET_BYTES, input, sizeof(input)); } int KYBER_marshal_public_key(CBB *out, const struct KYBER_public_key *public_key) { return kyber_marshal_public_key(out, public_key_from_external(public_key)); } // kyber_parse_public_key_no_hash parses |in| into |pub| but doesn't calculate // the value of |pub->public_key_hash|. static int kyber_parse_public_key_no_hash(struct public_key *pub, CBS *in) { CBS t_bytes; if (!CBS_get_bytes(in, &t_bytes, kEncodedVectorSize) || !vector_decode(&pub->t, CBS_data(&t_bytes), kLog2Prime) || !CBS_copy_bytes(in, pub->rho, sizeof(pub->rho))) { return 0; } matrix_expand(&pub->m, pub->rho); return 1; } int KYBER_parse_public_key(struct KYBER_public_key *public_key, CBS *in) { struct public_key *pub = public_key_from_external(public_key); CBS orig_in = *in; if (!kyber_parse_public_key_no_hash(pub, in) || // CBS_len(in) != 0) { return 0; } hash_h(pub->public_key_hash, CBS_data(&orig_in), CBS_len(&orig_in)); return 1; } int KYBER_marshal_private_key(CBB *out, const struct KYBER_private_key *private_key) { const struct private_key *const priv = private_key_from_external(private_key); uint8_t *s_output; if (!CBB_add_space(out, &s_output, kEncodedVectorSize)) { return 0; } vector_encode(s_output, &priv->s, kLog2Prime); if (!kyber_marshal_public_key(out, &priv->pub) || !CBB_add_bytes(out, priv->pub.public_key_hash, sizeof(priv->pub.public_key_hash)) || !CBB_add_bytes(out, priv->fo_failure_secret, sizeof(priv->fo_failure_secret))) { return 0; } return 1; } int KYBER_parse_private_key(struct KYBER_private_key *out_private_key, CBS *in) { struct private_key *const priv = private_key_from_external(out_private_key); CBS s_bytes; if (!CBS_get_bytes(in, &s_bytes, kEncodedVectorSize) || !vector_decode(&priv->s, CBS_data(&s_bytes), kLog2Prime) || !kyber_parse_public_key_no_hash(&priv->pub, in) || !CBS_copy_bytes(in, priv->pub.public_key_hash, sizeof(priv->pub.public_key_hash)) || !CBS_copy_bytes(in, priv->fo_failure_secret, sizeof(priv->fo_failure_secret)) || CBS_len(in) != 0) { return 0; } return 1; }