/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] * * The DSS routines are based on patches supplied by * Steven Schoch . */ #include #include #include #include #include #include #include #include #include #include #include "../test/test_util.h" // The following values are taken from the updated Appendix 5 to FIPS PUB 186 // and also appear in Appendix 5 to FIPS PUB 186-1. static const uint8_t seed[20] = { 0xd5, 0x01, 0x4e, 0x4b, 0x60, 0xef, 0x2b, 0xa8, 0xb6, 0x21, 0x1b, 0x40, 0x62, 0xba, 0x32, 0x24, 0xe0, 0x42, 0x7d, 0xd3, }; static const uint8_t fips_p[] = { 0x8d, 0xf2, 0xa4, 0x94, 0x49, 0x22, 0x76, 0xaa, 0x3d, 0x25, 0x75, 0x9b, 0xb0, 0x68, 0x69, 0xcb, 0xea, 0xc0, 0xd8, 0x3a, 0xfb, 0x8d, 0x0c, 0xf7, 0xcb, 0xb8, 0x32, 0x4f, 0x0d, 0x78, 0x82, 0xe5, 0xd0, 0x76, 0x2f, 0xc5, 0xb7, 0x21, 0x0e, 0xaf, 0xc2, 0xe9, 0xad, 0xac, 0x32, 0xab, 0x7a, 0xac, 0x49, 0x69, 0x3d, 0xfb, 0xf8, 0x37, 0x24, 0xc2, 0xec, 0x07, 0x36, 0xee, 0x31, 0xc8, 0x02, 0x91, }; static const uint8_t fips_q[] = { 0xc7, 0x73, 0x21, 0x8c, 0x73, 0x7e, 0xc8, 0xee, 0x99, 0x3b, 0x4f, 0x2d, 0xed, 0x30, 0xf4, 0x8e, 0xda, 0xce, 0x91, 0x5f, }; static const uint8_t fips_g[] = { 0x62, 0x6d, 0x02, 0x78, 0x39, 0xea, 0x0a, 0x13, 0x41, 0x31, 0x63, 0xa5, 0x5b, 0x4c, 0xb5, 0x00, 0x29, 0x9d, 0x55, 0x22, 0x95, 0x6c, 0xef, 0xcb, 0x3b, 0xff, 0x10, 0xf3, 0x99, 0xce, 0x2c, 0x2e, 0x71, 0xcb, 0x9d, 0xe5, 0xfa, 0x24, 0xba, 0xbf, 0x58, 0xe5, 0xb7, 0x95, 0x21, 0x92, 0x5c, 0x9c, 0xc4, 0x2e, 0x9f, 0x6f, 0x46, 0x4b, 0x08, 0x8c, 0xc5, 0x72, 0xaf, 0x53, 0xe6, 0xd7, 0x88, 0x02, }; static const uint8_t fips_x[] = { 0x20, 0x70, 0xb3, 0x22, 0x3d, 0xba, 0x37, 0x2f, 0xde, 0x1c, 0x0f, 0xfc, 0x7b, 0x2e, 0x3b, 0x49, 0x8b, 0x26, 0x06, 0x14, }; static const uint8_t fips_y[] = { 0x19, 0x13, 0x18, 0x71, 0xd7, 0x5b, 0x16, 0x12, 0xa8, 0x19, 0xf2, 0x9d, 0x78, 0xd1, 0xb0, 0xd7, 0x34, 0x6f, 0x7a, 0xa7, 0x7b, 0xb6, 0x2a, 0x85, 0x9b, 0xfd, 0x6c, 0x56, 0x75, 0xda, 0x9d, 0x21, 0x2d, 0x3a, 0x36, 0xef, 0x16, 0x72, 0xef, 0x66, 0x0b, 0x8c, 0x7c, 0x25, 0x5c, 0xc0, 0xec, 0x74, 0x85, 0x8f, 0xba, 0x33, 0xf4, 0x4c, 0x06, 0x69, 0x96, 0x30, 0xa7, 0x6b, 0x03, 0x0e, 0xe3, 0x33, }; static const uint8_t fips_digest[] = { 0xa9, 0x99, 0x3e, 0x36, 0x47, 0x06, 0x81, 0x6a, 0xba, 0x3e, 0x25, 0x71, 0x78, 0x50, 0xc2, 0x6c, 0x9c, 0xd0, 0xd8, 0x9d, }; // fips_sig is a DER-encoded version of the r and s values in FIPS PUB 186-1. static const uint8_t fips_sig[] = { 0x30, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10, 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92, 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56, 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6, 0xdc, 0xd8, 0xc8, }; // fips_sig_negative is fips_sig with r encoded as a negative number. static const uint8_t fips_sig_negative[] = { 0x30, 0x2c, 0x02, 0x14, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10, 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92, 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56, 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6, 0xdc, 0xd8, 0xc8, }; // fip_sig_extra is fips_sig with trailing data. static const uint8_t fips_sig_extra[] = { 0x30, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10, 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92, 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56, 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6, 0xdc, 0xd8, 0xc8, 0x00, }; // fips_sig_lengths is fips_sig with a non-minimally encoded length. static const uint8_t fips_sig_bad_length[] = { 0x30, 0x81, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10, 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92, 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56, 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6, 0xdc, 0xd8, 0xc8, 0x00, }; // fips_sig_bad_r is fips_sig with a bad r value. static const uint8_t fips_sig_bad_r[] = { 0x30, 0x2d, 0x02, 0x15, 0x00, 0x8c, 0xac, 0x1a, 0xb6, 0x64, 0x10, 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92, 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56, 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6, 0xdc, 0xd8, 0xc8, }; static bssl::UniquePtr GetFIPSDSAGroup(void) { bssl::UniquePtr dsa(DSA_new()); if (!dsa) { return nullptr; } bssl::UniquePtr p(BN_bin2bn(fips_p, sizeof(fips_p), nullptr)); bssl::UniquePtr q(BN_bin2bn(fips_q, sizeof(fips_q), nullptr)); bssl::UniquePtr g(BN_bin2bn(fips_g, sizeof(fips_g), nullptr)); if (!p || !q || !g || !DSA_set0_pqg(dsa.get(), p.get(), q.get(), g.get())) { return nullptr; } // |DSA_set0_pqg| takes ownership. p.release(); q.release(); g.release(); return dsa; } static bssl::UniquePtr GetFIPSDSA(void) { bssl::UniquePtr dsa = GetFIPSDSAGroup(); if (!dsa) { return nullptr; } bssl::UniquePtr pub_key(BN_bin2bn(fips_y, sizeof(fips_y), nullptr)); bssl::UniquePtr priv_key(BN_bin2bn(fips_x, sizeof(fips_x), nullptr)); if (!pub_key || !priv_key || !DSA_set0_key(dsa.get(), pub_key.get(), priv_key.get())) { return nullptr; } // |DSA_set0_key| takes ownership. pub_key.release(); priv_key.release(); return dsa; } TEST(DSATest, Generate) { bssl::UniquePtr dsa(DSA_new()); ASSERT_TRUE(dsa); int counter; unsigned long h; ASSERT_TRUE(DSA_generate_parameters_ex(dsa.get(), 512, seed, 20, &counter, &h, nullptr)); EXPECT_EQ(counter, 105); EXPECT_EQ(h, 2u); auto expect_bn_bytes = [](const char *msg, const BIGNUM *bn, bssl::Span bytes) { std::vector buf(BN_num_bytes(bn)); BN_bn2bin(bn, buf.data()); EXPECT_EQ(Bytes(buf), Bytes(bytes)) << msg; }; expect_bn_bytes("q value is wrong", DSA_get0_q(dsa.get()), fips_q); expect_bn_bytes("p value is wrong", DSA_get0_p(dsa.get()), fips_p); expect_bn_bytes("g value is wrong", DSA_get0_g(dsa.get()), fips_g); ASSERT_TRUE(DSA_generate_key(dsa.get())); std::vector sig(DSA_size(dsa.get())); unsigned sig_len; ASSERT_TRUE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(), &sig_len, dsa.get())); EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), sig.data(), sig_len, dsa.get())); } TEST(DSATest, GenerateParamsTooLarge) { bssl::UniquePtr dsa(DSA_new()); ASSERT_TRUE(dsa); EXPECT_FALSE(DSA_generate_parameters_ex( dsa.get(), 10001, /*seed=*/nullptr, /*seed_len=*/0, /*out_counter=*/nullptr, /*out_h=*/nullptr, /*cb=*/nullptr)); } TEST(DSATest, GenerateKeyTooLarge) { bssl::UniquePtr dsa = GetFIPSDSA(); ASSERT_TRUE(dsa); bssl::UniquePtr large_p(BN_new()); ASSERT_TRUE(large_p); ASSERT_TRUE(BN_set_bit(large_p.get(), 10001)); ASSERT_TRUE(BN_set_bit(large_p.get(), 0)); ASSERT_TRUE(DSA_set0_pqg(dsa.get(), /*p=*/large_p.get(), /*q=*/nullptr, /*g=*/nullptr)); large_p.release(); // |DSA_set0_pqg| takes ownership on success. // Don't generate DSA keys if the group is too large. EXPECT_FALSE(DSA_generate_key(dsa.get())); } TEST(DSATest, Verify) { bssl::UniquePtr dsa = GetFIPSDSA(); ASSERT_TRUE(dsa); EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig, sizeof(fips_sig), dsa.get())); EXPECT_EQ(-1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_negative, sizeof(fips_sig_negative), dsa.get())); EXPECT_EQ(-1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_extra, sizeof(fips_sig_extra), dsa.get())); EXPECT_EQ(-1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_bad_length, sizeof(fips_sig_bad_length), dsa.get())); EXPECT_EQ(0, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_bad_r, sizeof(fips_sig_bad_r), dsa.get())); } TEST(DSATest, InvalidGroup) { bssl::UniquePtr dsa = GetFIPSDSA(); ASSERT_TRUE(dsa); bssl::UniquePtr zero(BN_new()); ASSERT_TRUE(zero); ASSERT_TRUE(DSA_set0_pqg(dsa.get(), /*p=*/nullptr, /*q=*/nullptr, /*g=*/zero.release())); std::vector sig(DSA_size(dsa.get())); unsigned sig_len; static const uint8_t kDigest[32] = {0}; EXPECT_FALSE( DSA_sign(0, kDigest, sizeof(kDigest), sig.data(), &sig_len, dsa.get())); EXPECT_TRUE( ErrorEquals(ERR_get_error(), ERR_LIB_DSA, DSA_R_INVALID_PARAMETERS)); } // Signing and verifying should cleanly fail when the DSA object is empty. TEST(DSATest, MissingParameters) { bssl::UniquePtr dsa(DSA_new()); ASSERT_TRUE(dsa); EXPECT_EQ(-1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig, sizeof(fips_sig), dsa.get())); std::vector sig(DSA_size(dsa.get())); unsigned sig_len; EXPECT_FALSE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(), &sig_len, dsa.get())); } // Verifying should cleanly fail when the public key is missing. TEST(DSATest, MissingPublic) { bssl::UniquePtr dsa = GetFIPSDSAGroup(); ASSERT_TRUE(dsa); EXPECT_EQ(-1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig, sizeof(fips_sig), dsa.get())); } // Signing should cleanly fail when the private key is missing. TEST(DSATest, MissingPrivate) { bssl::UniquePtr dsa = GetFIPSDSAGroup(); ASSERT_TRUE(dsa); std::vector sig(DSA_size(dsa.get())); unsigned sig_len; EXPECT_FALSE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(), &sig_len, dsa.get())); } // A zero private key is invalid and can cause signing to loop forever. TEST(DSATest, ZeroPrivateKey) { bssl::UniquePtr dsa = GetFIPSDSA(); ASSERT_TRUE(dsa); bssl::UniquePtr zero(BN_new()); ASSERT_TRUE(zero); ASSERT_TRUE(DSA_set0_key(dsa.get(), /*pub_key=*/nullptr, /*priv_key=*/zero.release())); static const uint8_t kZeroDigest[32] = {0}; std::vector sig(DSA_size(dsa.get())); unsigned sig_len; EXPECT_FALSE(DSA_sign(0, kZeroDigest, sizeof(kZeroDigest), sig.data(), &sig_len, dsa.get())); } // If the "field" is actually a ring and the "generator" of the multiplicative // subgroup is actually nilpotent with low degree, DSA signing never completes. // Test that we give up in the infinite loop. TEST(DSATest, NilpotentGenerator) { static const char kPEM[] = R"( -----BEGIN DSA PRIVATE KEY----- MGECAQACFQHH+MnFXh4NNlZiV/zUVb5a5ib3kwIVAOP8ZOKvDwabKzEr/moq3y1z E3vJAhUAl/2Ylx9fWbzHdh1URsc/c6IM/TECAQECFCsjU4AZRcuks45g1NMOUeCB Epvg -----END DSA PRIVATE KEY----- )"; bssl::UniquePtr bio(BIO_new_mem_buf(kPEM, sizeof(kPEM))); ASSERT_TRUE(bio); bssl::UniquePtr dsa( PEM_read_bio_DSAPrivateKey(bio.get(), nullptr, nullptr, nullptr)); ASSERT_TRUE(dsa); std::vector sig(DSA_size(dsa.get())); unsigned sig_len; EXPECT_FALSE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(), &sig_len, dsa.get())); } TEST(DSATest, Overwrite) { // Load an arbitrary DSA private key and use it. static const char kPEM[] = R"( -----BEGIN DSA PRIVATE KEY----- MIIDTgIBAAKCAQEAyH68EuravtF+7PTFBtWJkwjmp0YJmh8e2Cdpu8ci3dZf87rk GwXzfqYkAEkW5H4Hp0cxdICKFiqfxjSaiEauOrNV+nXWZS634hZ9H47I8HnAVS0p 5MmSmPJ7NNUowymMpyB6M6hfqHl/1pZd7avbTmnzb2SZ0kw0WLWJo6vMekepYWv9 3o1Xove4ci00hnkr7Qo9Bh/+z84jgeT2/MTdsCVtbuMv/mbcYLhCKVWPBozDZr/D qwhGTlomsTRvP3WIbem3b5eYhQaPuMsKiAzntcinoxQXWrIoZB+xJyF/sI013uBI i9ePSxY3704U4QGxVM0aR/6fzORz5kh8ZjhhywIdAI9YBUR6eoGevUaLq++qXiYW TgXBXlyqE32ESbkCggEBAL/c5GerO5g25D0QsfgVIJtlZHQOwYauuWoUudaQiyf6 VhWLBNNTAGldkFGdtxsA42uqqZSXCki25LvN6PscGGvFy8oPWaa9TGt+l9Z5ZZiV ShNpg71V9YuImsPB3BrQ4L6nZLfhBt6InzJ6KqjDNdg7u6lgnFKue7l6khzqNxbM RgxHWMq7PkhMcl+RzpqbiGcxSHqraxldutqCWsnZzhKh4d4GdunuRY8GiFo0Axkb Kn0Il3zm81ewv08F/ocu+IZQEzxTyR8YRQ99MLVbnwhVxndEdLjjetCX82l+/uEY 5fdUy0thR8odcDsvUc/tT57I+yhnno80HbpUUNw2+/sCggEAdh1wp/9CifYIp6T8 P/rIus6KberZ2Pv/n0bl+Gv8AoToA0zhZXIfY2l0TtanKmdLqPIvjqkN0v6zGSs+ +ahR1QzMQnK718mcsQmB4X6iP5LKgJ/t0g8LrDOxc/cNycmHq76MmF9RN5NEBz4+ PAnRIftm/b0UQflP6uy3gRQP2X7P8ZebCytOPKTZC4oLyCtvPevSkCiiauq/RGjL k6xqRgLxMtmuyhT+dcVbtllV1p1xd9Bppnk17/kR5VCefo/e/7DHu163izRDW8tx SrEmiVyVkRijY3bVZii7LPfMz5eEAWEDJRuFwyNv3i6j7CKeZw2d/hzu370Ua28F s2lmkAIcLIFUDFrbC2nViaB5ATM9ARKk6F2QwnCfGCyZ6A== -----END DSA PRIVATE KEY----- )"; bssl::UniquePtr bio(BIO_new_mem_buf(kPEM, sizeof(kPEM))); ASSERT_TRUE(bio); bssl::UniquePtr dsa( PEM_read_bio_DSAPrivateKey(bio.get(), nullptr, nullptr, nullptr)); ASSERT_TRUE(dsa); std::vector sig(DSA_size(dsa.get())); unsigned sig_len; ASSERT_TRUE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(), &sig_len, dsa.get())); sig.resize(sig_len); EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), sig.data(), sig.size(), dsa.get())); // Overwrite it with the sample key. bssl::UniquePtr p(BN_bin2bn(fips_p, sizeof(fips_p), nullptr)); ASSERT_TRUE(p); bssl::UniquePtr q(BN_bin2bn(fips_q, sizeof(fips_q), nullptr)); ASSERT_TRUE(q); bssl::UniquePtr g(BN_bin2bn(fips_g, sizeof(fips_g), nullptr)); ASSERT_TRUE(g); ASSERT_TRUE(DSA_set0_pqg(dsa.get(), p.get(), q.get(), g.get())); // |DSA_set0_pqg| takes ownership on success. p.release(); q.release(); g.release(); bssl::UniquePtr pub_key(BN_bin2bn(fips_y, sizeof(fips_y), nullptr)); ASSERT_TRUE(pub_key); bssl::UniquePtr priv_key(BN_bin2bn(fips_x, sizeof(fips_x), nullptr)); ASSERT_TRUE(priv_key); ASSERT_TRUE(DSA_set0_key(dsa.get(), pub_key.get(), priv_key.get())); // |DSA_set0_key| takes ownership on success. pub_key.release(); priv_key.release(); // The key should now work correctly for the new parameters. EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig, sizeof(fips_sig), dsa.get())); // Test signing by verifying it round-trips through the real key. sig.resize(DSA_size(dsa.get())); ASSERT_TRUE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(), &sig_len, dsa.get())); sig.resize(sig_len); dsa = GetFIPSDSA(); ASSERT_TRUE(dsa); EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), sig.data(), sig.size(), dsa.get())); }