// // Copyright 2012 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // ANGLETest: // Implementation of common ANGLE testing fixture. // #ifndef ANGLE_TESTS_ANGLE_TEST_H_ #define ANGLE_TESTS_ANGLE_TEST_H_ #include #include #include #include "RenderDoc.h" #include "angle_test_configs.h" #include "angle_test_platform.h" #include "common/angleutils.h" #include "common/system_utils.h" #include "common/vector_utils.h" #include "platform/PlatformMethods.h" #include "util/EGLWindow.h" #include "util/shader_utils.h" #include "util/util_gl.h" namespace angle { struct SystemInfo; class RNG; } // namespace angle #define ASSERT_GL_TRUE(a) ASSERT_EQ(static_cast(GL_TRUE), (a)) #define ASSERT_GL_FALSE(a) ASSERT_EQ(static_cast(GL_FALSE), (a)) #define EXPECT_GL_TRUE(a) EXPECT_EQ(static_cast(GL_TRUE), (a)) #define EXPECT_GL_FALSE(a) EXPECT_EQ(static_cast(GL_FALSE), (a)) #define EXPECT_GL_ERROR(err) EXPECT_EQ(static_cast(err), glGetError()) #define EXPECT_GL_NO_ERROR() EXPECT_EQ(static_cast(GL_NO_ERROR), glGetError()) #define ASSERT_GL_ERROR(err) ASSERT_EQ(static_cast(err), glGetError()) #define ASSERT_GL_NO_ERROR() ASSERT_EQ(static_cast(GL_NO_ERROR), glGetError()) #define EXPECT_EGL_ERROR(err) EXPECT_EQ((err), eglGetError()) #define EXPECT_EGL_SUCCESS() EXPECT_EGL_ERROR(EGL_SUCCESS) // EGLBoolean is |unsigned int| but EGL_TRUE is 0, not 0u. #define ASSERT_EGL_TRUE(a) ASSERT_EQ(static_cast(EGL_TRUE), static_cast(a)) #define ASSERT_EGL_FALSE(a) \ ASSERT_EQ(static_cast(EGL_FALSE), static_cast(a)) #define EXPECT_EGL_TRUE(a) EXPECT_EQ(static_cast(EGL_TRUE), static_cast(a)) #define EXPECT_EGL_FALSE(a) \ EXPECT_EQ(static_cast(EGL_FALSE), static_cast(a)) #define ASSERT_EGL_ERROR(err) ASSERT_EQ((err), eglGetError()) #define ASSERT_EGL_SUCCESS() ASSERT_EGL_ERROR(EGL_SUCCESS) #define ASSERT_GLENUM_EQ(expected, actual) \ ASSERT_EQ(static_cast(expected), static_cast(actual)) #define EXPECT_GLENUM_EQ(expected, actual) \ EXPECT_EQ(static_cast(expected), static_cast(actual)) #define ASSERT_GLENUM_NE(expected, actual) \ ASSERT_NE(static_cast(expected), static_cast(actual)) #define EXPECT_GLENUM_NE(expected, actual) \ EXPECT_NE(static_cast(expected), static_cast(actual)) testing::AssertionResult AssertEGLEnumsEqual(const char *lhsExpr, const char *rhsExpr, EGLenum lhs, EGLenum rhs); #define ASSERT_EGLENUM_EQ(expected, actual) \ ASSERT_PRED_FORMAT2(AssertEGLEnumsEqual, static_cast(expected), \ static_cast(actual)) #define EXPECT_EGLENUM_EQ(expected, actual) \ EXPECT_PRED_FORMAT2(AssertEGLEnumsEqual, static_cast(expected), \ static_cast(actual)) #define ASSERT_GL_FRAMEBUFFER_COMPLETE(framebuffer) \ ASSERT_GLENUM_EQ(GL_FRAMEBUFFER_COMPLETE, glCheckFramebufferStatus(framebuffer)) #define EXPECT_GL_FRAMEBUFFER_COMPLETE(framebuffer) \ EXPECT_GLENUM_EQ(GL_FRAMEBUFFER_COMPLETE, glCheckFramebufferStatus(framebuffer)) namespace angle { struct GLColorRGB { constexpr GLColorRGB() : R(0), G(0), B(0) {} constexpr GLColorRGB(GLubyte r, GLubyte g, GLubyte b) : R(r), G(g), B(b) {} GLColorRGB(const angle::Vector3 &floatColor); const GLubyte *data() const { return &R; } GLubyte *data() { return &R; } GLubyte R, G, B; static const GLColorRGB black; static const GLColorRGB blue; static const GLColorRGB green; static const GLColorRGB red; static const GLColorRGB yellow; }; struct GLColorRG { constexpr GLColorRG() : R(0), G(0) {} constexpr GLColorRG(GLubyte r, GLubyte g) : R(r), G(g) {} GLColorRG(const angle::Vector2 &floatColor); const GLubyte *data() const { return &R; } GLubyte *data() { return &R; } GLubyte R, G; }; struct GLColorR { constexpr GLColorR() : R(0) {} constexpr GLColorR(GLubyte r) : R(r) {} GLColorR(const float floatColor); const GLubyte *data() const { return &R; } GLubyte *data() { return &R; } GLubyte R; }; struct GLColor { constexpr GLColor() : R(0), G(0), B(0), A(0) {} constexpr GLColor(GLubyte r, GLubyte g, GLubyte b, GLubyte a) : R(r), G(g), B(b), A(a) {} GLColor(const angle::Vector3 &floatColor); GLColor(const angle::Vector4 &floatColor); GLColor(GLuint colorValue); angle::Vector4 toNormalizedVector() const; GLubyte &operator[](size_t index) { return (&R)[index]; } const GLubyte &operator[](size_t index) const { return (&R)[index]; } const GLubyte *data() const { return &R; } GLubyte *data() { return &R; } GLuint asUint() const; testing::AssertionResult ExpectNear(const GLColor &expected, const GLColor &err) const; GLubyte R, G, B, A; static const GLColor black; static const GLColor blue; static const GLColor cyan; static const GLColor green; static const GLColor red; static const GLColor transparentBlack; static const GLColor white; static const GLColor yellow; static const GLColor magenta; }; template struct GLColorT { constexpr GLColorT() : GLColorT(0, 0, 0, 0) {} constexpr GLColorT(T r, T g, T b, T a) : R(r), G(g), B(b), A(a) {} T R, G, B, A; }; using GLColor16 = GLColorT; using GLColor32F = GLColorT; using GLColor32I = GLColorT; using GLColor32UI = GLColorT; static constexpr GLColor32F kFloatBlack = {0.0f, 0.0f, 0.0f, 1.0f}; static constexpr GLColor32F kFloatRed = {1.0f, 0.0f, 0.0f, 1.0f}; static constexpr GLColor32F kFloatGreen = {0.0f, 1.0f, 0.0f, 1.0f}; static constexpr GLColor32F kFloatBlue = {0.0f, 0.0f, 1.0f, 1.0f}; // The input here for pixelPoints are the expected integer window coordinates, we add .5 to every // one of them and re-scale the numbers to be between [-1,1]. Using this technique, we can make // sure the rasterization stage will end up drawing pixels at the expected locations. void CreatePixelCenterWindowCoords(const std::vector &pixelPoints, int windowWidth, int windowHeight, std::vector *outVertices); // Useful to cast any type to GLubyte. template GLColor MakeGLColor(TR r, TG g, TB b, TA a) { return GLColor(static_cast(r), static_cast(g), static_cast(b), static_cast(a)); } GLColor RandomColor(angle::RNG *rng); bool operator==(const GLColor &a, const GLColor &b); bool operator!=(const GLColor &a, const GLColor &b); std::ostream &operator<<(std::ostream &ostream, const GLColor &color); GLColor ReadColor(GLint x, GLint y); bool operator==(const GLColorRGB &a, const GLColorRGB &b); bool operator!=(const GLColorRGB &a, const GLColorRGB &b); std::ostream &operator<<(std::ostream &ostream, const GLColorRGB &color); // Useful to cast any type to GLfloat. template GLColor32F MakeGLColor32F(TR r, TG g, TB b, TA a) { return GLColor32F(static_cast(r), static_cast(g), static_cast(b), static_cast(a)); } template bool operator==(const GLColorT &a, const GLColorT &b) { return a.R == b.R && a.G == b.G && a.B == b.B && a.A == b.A; } std::ostream &operator<<(std::ostream &ostream, const GLColor32F &color); GLColor32F ReadColor32F(GLint x, GLint y); constexpr std::array kCubeFaces = { {GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z, GL_TEXTURE_CUBE_MAP_NEGATIVE_Z}}; void LoadEntryPointsWithUtilLoader(angle::GLESDriverType driver); bool IsFormatEmulated(GLenum target); } // namespace angle #define EXPECT_PIXEL_EQ(x, y, r, g, b, a) \ EXPECT_EQ(angle::MakeGLColor(r, g, b, a), angle::ReadColor(x, y)) #define EXPECT_PIXEL_NE(x, y, r, g, b, a) \ EXPECT_NE(angle::MakeGLColor(r, g, b, a), angle::ReadColor(x, y)) #define EXPECT_PIXEL_32F_EQ(x, y, r, g, b, a) \ EXPECT_EQ(angle::MakeGLColor32F(r, g, b, a), angle::ReadColor32F(x, y)) #define EXPECT_PIXEL_ALPHA_EQ(x, y, a) EXPECT_EQ(a, angle::ReadColor(x, y).A) #define EXPECT_PIXEL_ALPHA_NEAR(x, y, a, abs_error) \ EXPECT_NEAR(a, angle::ReadColor(x, y).A, abs_error); #define EXPECT_PIXEL_ALPHA32F_EQ(x, y, a) EXPECT_EQ(a, angle::ReadColor32F(x, y).A) #define EXPECT_PIXEL_COLOR_EQ(x, y, angleColor) EXPECT_EQ(angleColor, angle::ReadColor(x, y)) #define EXPECT_PIXEL_COLOR_EQ_VEC2(vec2, angleColor) \ EXPECT_EQ(angleColor, \ angle::ReadColor(static_cast(vec2.x()), static_cast(vec2.y()))) #define EXPECT_PIXEL_COLOR32F_EQ(x, y, angleColor) EXPECT_EQ(angleColor, angle::ReadColor32F(x, y)) #define EXPECT_PIXEL_RECT_T_EQ(T, x, y, width, height, format, type, color) \ do \ { \ std::vector actualColors((width) * (height)); \ glReadPixels((x), (y), (width), (height), format, type, actualColors.data()); \ std::vector expectedColors((width) * (height), color); \ EXPECT_EQ(expectedColors, actualColors); \ } while (0) #define EXPECT_PIXEL_RECT_EQ(x, y, width, height, color) \ EXPECT_PIXEL_RECT_T_EQ(GLColor, x, y, width, height, GL_RGBA, GL_UNSIGNED_BYTE, color) #define EXPECT_PIXEL_RECT32F_EQ(x, y, width, height, color) \ EXPECT_PIXEL_RECT_T_EQ(GLColor32F, x, y, width, height, GL_RGBA, GL_FLOAT, color) #define EXPECT_PIXEL_RECT32I_EQ(x, y, width, height, color) \ EXPECT_PIXEL_RECT_T_EQ(GLColor32I, x, y, width, height, GL_RGBA_INTEGER, GL_INT, color) #define EXPECT_PIXEL_RECT32UI_EQ(x, y, width, height, color) \ EXPECT_PIXEL_RECT_T_EQ(GLColor32UI, x, y, width, height, GL_RGBA_INTEGER, GL_UNSIGNED_INT, \ color) #define EXPECT_PIXEL_NEAR_HELPER(x, y, r, g, b, a, abs_error, ctype, format, type) \ do \ { \ ctype pixel[4]; \ glReadPixels((x), (y), 1, 1, format, type, pixel); \ EXPECT_GL_NO_ERROR(); \ EXPECT_NEAR((r), pixel[0], abs_error); \ EXPECT_NEAR((g), pixel[1], abs_error); \ EXPECT_NEAR((b), pixel[2], abs_error); \ EXPECT_NEAR((a), pixel[3], abs_error); \ } while (0) #define EXPECT_PIXEL_EQ_HELPER(x, y, r, g, b, a, ctype, format, type) \ do \ { \ ctype pixel[4]; \ glReadPixels((x), (y), 1, 1, format, type, pixel); \ EXPECT_GL_NO_ERROR(); \ EXPECT_EQ((r), pixel[0]); \ EXPECT_EQ((g), pixel[1]); \ EXPECT_EQ((b), pixel[2]); \ EXPECT_EQ((a), pixel[3]); \ } while (0) #define EXPECT_PIXEL_NEAR(x, y, r, g, b, a, abs_error) \ EXPECT_PIXEL_NEAR_HELPER(x, y, r, g, b, a, abs_error, GLubyte, GL_RGBA, GL_UNSIGNED_BYTE) #define EXPECT_PIXEL_16_NEAR(x, y, r, g, b, a, abs_error) \ EXPECT_PIXEL_NEAR_HELPER(x, y, r, g, b, a, abs_error, GLushort, GL_RGBA, GL_UNSIGNED_SHORT) #define EXPECT_PIXEL_8S_NEAR(x, y, r, g, b, a, abs_error) \ EXPECT_PIXEL_NEAR_HELPER(x, y, r, g, b, a, abs_error, GLbyte, GL_RGBA, GL_BYTE) #define EXPECT_PIXEL_16S_NEAR(x, y, r, g, b, a, abs_error) \ EXPECT_PIXEL_NEAR_HELPER(x, y, r, g, b, a, abs_error, GLshort, GL_RGBA, GL_SHORT) #define EXPECT_PIXEL_32F_NEAR(x, y, r, g, b, a, abs_error) \ EXPECT_PIXEL_NEAR_HELPER(x, y, r, g, b, a, abs_error, GLfloat, GL_RGBA, GL_FLOAT) #define EXPECT_PIXEL_8I(x, y, r, g, b, a) \ EXPECT_PIXEL_EQ_HELPER(x, y, r, g, b, a, GLbyte, GL_RGBA_INTEGER, GL_BYTE) #define EXPECT_PIXEL_8UI(x, y, r, g, b, a) \ EXPECT_PIXEL_EQ_HELPER(x, y, r, g, b, a, GLubyte, GL_RGBA_INTEGER, GL_UNSIGNED_BYTE) #define EXPECT_PIXEL_32UI(x, y, r, g, b, a) \ EXPECT_PIXEL_EQ_HELPER(x, y, r, g, b, a, GLuint, GL_RGBA_INTEGER, GL_UNSIGNED_INT) #define EXPECT_PIXEL_32I(x, y, r, g, b, a) \ EXPECT_PIXEL_EQ_HELPER(x, y, r, g, b, a, GLint, GL_RGBA_INTEGER, GL_INT) #define EXPECT_PIXEL_32UI_COLOR(x, y, color) \ EXPECT_PIXEL_32UI(x, y, color.R, color.G, color.B, color.A) #define EXPECT_PIXEL_32I_COLOR(x, y, color) \ EXPECT_PIXEL_32I(x, y, color.R, color.G, color.B, color.A) // TODO(jmadill): Figure out how we can use GLColor's nice printing with EXPECT_NEAR. #define EXPECT_PIXEL_COLOR_NEAR(x, y, angleColor, abs_error) \ EXPECT_PIXEL_NEAR(x, y, angleColor.R, angleColor.G, angleColor.B, angleColor.A, abs_error) #define EXPECT_PIXEL_COLOR16_NEAR(x, y, angleColor, abs_error) \ EXPECT_PIXEL_16_NEAR(x, y, angleColor.R, angleColor.G, angleColor.B, angleColor.A, abs_error) #define EXPECT_PIXEL_COLOR32F_NEAR(x, y, angleColor, abs_error) \ EXPECT_PIXEL32F_NEAR(x, y, angleColor.R, angleColor.G, angleColor.B, angleColor.A, abs_error) #define EXPECT_COLOR_NEAR(expected, actual, abs_error) \ do \ { \ EXPECT_NEAR(expected.R, actual.R, abs_error); \ EXPECT_NEAR(expected.G, actual.G, abs_error); \ EXPECT_NEAR(expected.B, actual.B, abs_error); \ EXPECT_NEAR(expected.A, actual.A, abs_error); \ } while (0) #define EXPECT_PIXEL32F_NEAR(x, y, r, g, b, a, abs_error) \ do \ { \ GLfloat pixel[4]; \ glReadPixels((x), (y), 1, 1, GL_RGBA, GL_FLOAT, pixel); \ EXPECT_GL_NO_ERROR(); \ EXPECT_NEAR((r), pixel[0], abs_error); \ EXPECT_NEAR((g), pixel[1], abs_error); \ EXPECT_NEAR((b), pixel[2], abs_error); \ EXPECT_NEAR((a), pixel[3], abs_error); \ } while (0) #define EXPECT_PIXEL_COLOR32F_NEAR(x, y, angleColor, abs_error) \ EXPECT_PIXEL32F_NEAR(x, y, angleColor.R, angleColor.G, angleColor.B, angleColor.A, abs_error) #define EXPECT_PIXEL_STENCIL_EQ(x, y, expected) \ do \ { \ GLubyte actual; \ glReadPixels((x), (y), 1, 1, GL_STENCIL_INDEX, GL_UNSIGNED_BYTE, &actual); \ EXPECT_GL_NO_ERROR(); \ EXPECT_EQ((expected), actual); \ } while (0) class ANGLETestBase; class EGLWindow; class GLWindowBase; class OSWindow; class WGLWindow; struct TestPlatformContext final : private angle::NonCopyable { bool ignoreMessages = false; bool warningsAsErrors = false; ANGLETestBase *currentTest = nullptr; }; class ANGLETestBase { protected: ANGLETestBase(const angle::PlatformParameters ¶ms); virtual ~ANGLETestBase(); public: void setWindowVisible(OSWindow *osWindow, bool isVisible); static void ReleaseFixtures(); bool isSwiftshader() const { // Renderer might be swiftshader even if local swiftshader not used. return mCurrentParams->isSwiftshader() || angle::IsSwiftshaderDevice(); } bool enableDebugLayers() const { return mCurrentParams->eglParameters.debugLayersEnabled != EGL_FALSE; } void *operator new(size_t size); void operator delete(void *ptr); protected: void ANGLETestSetUp(); void ANGLETestPreTearDown(); void ANGLETestTearDown(); virtual void swapBuffers(); void setupQuadVertexBuffer(GLfloat positionAttribZ, GLfloat positionAttribXYScale); void setupIndexedQuadVertexBuffer(GLfloat positionAttribZ, GLfloat positionAttribXYScale); void setupIndexedQuadIndexBuffer(); void drawQuad(GLuint program, const std::string &positionAttribName, GLfloat positionAttribZ); void drawQuad(GLuint program, const std::string &positionAttribName, GLfloat positionAttribZ, GLfloat positionAttribXYScale); void drawQuad(GLuint program, const std::string &positionAttribName, GLfloat positionAttribZ, GLfloat positionAttribXYScale, bool useVertexBuffer); void drawQuadInstanced(GLuint program, const std::string &positionAttribName, GLfloat positionAttribZ, GLfloat positionAttribXYScale, bool useVertexBuffer, GLuint numInstances); void drawPatches(GLuint program, const std::string &positionAttribName, GLfloat positionAttribZ, GLfloat positionAttribXYScale, bool useVertexBuffer); void drawQuadPPO(GLuint vertProgram, const std::string &positionAttribName, const GLfloat positionAttribZ, const GLfloat positionAttribXYScale); static std::array GetQuadVertices(); static std::array GetQuadIndices(); static std::array GetIndexedQuadVertices(); void drawIndexedQuad(GLuint program, const std::string &positionAttribName, GLfloat positionAttribZ); void drawIndexedQuad(GLuint program, const std::string &positionAttribName, GLfloat positionAttribZ, GLfloat positionAttribXYScale); void drawIndexedQuad(GLuint program, const std::string &positionAttribName, GLfloat positionAttribZ, GLfloat positionAttribXYScale, bool useBufferObject); void drawIndexedQuad(GLuint program, const std::string &positionAttribName, GLfloat positionAttribZ, GLfloat positionAttribXYScale, bool useBufferObject, bool restrictedRange); void draw2DTexturedQuad(GLfloat positionAttribZ, GLfloat positionAttribXYScale, bool useVertexBuffer); // The layer parameter chooses the 3D texture layer to sample from. void draw3DTexturedQuad(GLfloat positionAttribZ, GLfloat positionAttribXYScale, bool useVertexBuffer, float layer); // The layer parameter chooses the 2DArray texture layer to sample from. void draw2DArrayTexturedQuad(GLfloat positionAttribZ, GLfloat positionAttribXYScale, bool useVertexBuffer, float layer); void setWindowWidth(int width); void setWindowHeight(int height); void setConfigRedBits(int bits); void setConfigGreenBits(int bits); void setConfigBlueBits(int bits); void setConfigAlphaBits(int bits); void setConfigDepthBits(int bits); void setConfigStencilBits(int bits); void setConfigComponentType(EGLenum componentType); void setMultisampleEnabled(bool enabled); void setSamples(EGLint samples); void setDebugEnabled(bool enabled); void setNoErrorEnabled(bool enabled); void setWebGLCompatibilityEnabled(bool webglCompatibility); void setExtensionsEnabled(bool extensionsEnabled); void setRobustAccess(bool enabled); void setBindGeneratesResource(bool bindGeneratesResource); void setClientArraysEnabled(bool enabled); void setRobustResourceInit(bool enabled); void setMutableRenderBuffer(bool enabled); void setContextProgramCacheEnabled(bool enabled); void setContextResetStrategy(EGLenum resetStrategy); void forceNewDisplay(); // Some EGL extension tests would like to defer the Context init until the test body. void setDeferContextInit(bool enabled); int getClientMajorVersion() const; int getClientMinorVersion() const; GLWindowBase *getGLWindow() const; EGLWindow *getEGLWindow() const; int getWindowWidth() const; int getWindowHeight() const; EGLint getPlatformRenderer() const; void ignoreD3D11SDKLayersWarnings(); OSWindow *getOSWindow() { return mFixture->osWindow; } GLuint get2DTexturedQuadProgram(); // Has a float uniform "u_layer" to choose the 3D texture layer. GLuint get3DTexturedQuadProgram(); // Has a float uniform "u_layer" to choose the 2DArray texture layer. GLuint get2DArrayTexturedQuadProgram(); class [[nodiscard]] ScopedIgnorePlatformMessages : angle::NonCopyable { public: ScopedIgnorePlatformMessages(); ~ScopedIgnorePlatformMessages(); }; // Can be used before we get a GL context. bool isGLRenderer() const { return mCurrentParams->getRenderer() == EGL_PLATFORM_ANGLE_TYPE_OPENGL_ANGLE; } bool isGLESRenderer() const { return mCurrentParams->getRenderer() == EGL_PLATFORM_ANGLE_TYPE_OPENGLES_ANGLE; } bool isD3D11Renderer() const { return mCurrentParams->getRenderer() == EGL_PLATFORM_ANGLE_TYPE_D3D11_ANGLE; } bool isVulkanRenderer() const { return mCurrentParams->getRenderer() == EGL_PLATFORM_ANGLE_TYPE_VULKAN_ANGLE; } bool isVulkanSwiftshaderRenderer() const { return mCurrentParams->getRenderer() == EGL_PLATFORM_ANGLE_TYPE_VULKAN_ANGLE && mCurrentParams->isSwiftshader(); } bool platformSupportsMultithreading() const; bool mIsSetUp = false; private: void checkD3D11SDKLayersMessages(); void drawQuad(GLuint program, const std::string &positionAttribName, GLfloat positionAttribZ, GLfloat positionAttribXYScale, bool useVertexBuffer, bool useInstancedDrawCalls, bool useTessellationPatches, GLuint numInstances); void initOSWindow(); struct TestFixture { TestFixture(); ~TestFixture(); EGLWindow *eglWindow = nullptr; WGLWindow *wglWindow = nullptr; OSWindow *osWindow = nullptr; ConfigParameters configParams; uint32_t reuseCounter = 0; }; int mWidth; int mHeight; bool mIgnoreD3D11SDKLayersWarnings; // Used for indexed quad rendering GLuint mQuadVertexBuffer; GLuint mQuadIndexBuffer; // Used for texture rendering. GLuint m2DTexturedQuadProgram; GLuint m3DTexturedQuadProgram; GLuint m2DArrayTexturedQuadProgram; bool mDeferContextInit; bool mAlwaysForceNewDisplay; bool mForceNewDisplay; bool mSetUpCalled; bool mTearDownCalled; // Usually, we use an OS Window per "fixture" (a frontend and backend combination). // This allows: // 1. Reusing EGL Display on Windows. // Other platforms have issues with display reuse even if a window per fixture is used. // 2. Hiding only SwiftShader OS Window on Linux. // OS Windows for other backends must be visible, to allow driver to communicate with X11. // However, we must use a single OS Window for all backends on Android, // since test Application can have only one window. static OSWindow *mOSWindowSingleton; static std::map gFixtures; const angle::PlatformParameters *mCurrentParams; TestFixture *mFixture; RenderDoc mRenderDoc; // Workaround for NVIDIA not being able to share a window with OpenGL and Vulkan. static Optional mLastRendererType; static Optional mLastLoadedDriver; }; template class ANGLETest : public ANGLETestBase, public ::testing::TestWithParam { protected: ANGLETest(); virtual void testSetUp() {} virtual void testTearDown() {} void recreateTestFixture() { TearDown(); SetUp(); } private: void SetUp() final { ANGLETestBase::ANGLETestSetUp(); if (mIsSetUp) { testSetUp(); } } void TearDown() final { ANGLETestBase::ANGLETestPreTearDown(); if (mIsSetUp) { testTearDown(); } ANGLETestBase::ANGLETestTearDown(); } }; enum class APIExtensionVersion { Core, OES, EXT, KHR, }; template ANGLETest::ANGLETest() : ANGLETestBase(std::get(this->GetParam())) {} template <> inline ANGLETest::ANGLETest() : ANGLETestBase(this->GetParam()) {} class ANGLETestEnvironment : public testing::Environment { public: void SetUp() override; void TearDown() override; static angle::Library *GetDriverLibrary(angle::GLESDriverType driver); private: static angle::Library *GetAngleEGLLibrary(); static angle::Library *GetAngleVulkanSecondariesEGLLibrary(); static angle::Library *GetMesaEGLLibrary(); static angle::Library *GetSystemEGLLibrary(); static angle::Library *GetSystemWGLLibrary(); // For loading entry points. static std::unique_ptr gAngleEGLLibrary; static std::unique_ptr gAngleVulkanSecondariesEGLLibrary; static std::unique_ptr gMesaEGLLibrary; static std::unique_ptr gSystemEGLLibrary; static std::unique_ptr gSystemWGLLibrary; }; extern angle::PlatformMethods gDefaultPlatformMethods; #endif // ANGLE_TESTS_ANGLE_TEST_H_