// // Copyright 2015 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // ProgramGL.cpp: Implements the class methods for ProgramGL. #include "libANGLE/renderer/gl/ProgramGL.h" #include "common/WorkerThread.h" #include "common/angleutils.h" #include "common/bitset_utils.h" #include "common/debug.h" #include "common/string_utils.h" #include "common/utilities.h" #include "libANGLE/Context.h" #include "libANGLE/ProgramLinkedResources.h" #include "libANGLE/Uniform.h" #include "libANGLE/queryconversions.h" #include "libANGLE/renderer/gl/ContextGL.h" #include "libANGLE/renderer/gl/FunctionsGL.h" #include "libANGLE/renderer/gl/RendererGL.h" #include "libANGLE/renderer/gl/ShaderGL.h" #include "libANGLE/renderer/gl/StateManagerGL.h" #include "libANGLE/trace.h" #include "platform/PlatformMethods.h" #include "platform/autogen/FeaturesGL_autogen.h" namespace rx { namespace { // Returns mapped name of a transform feedback varying. The original name may contain array // brackets with an index inside, which will get copied to the mapped name. The varying must be // known to be declared in the shader. std::string GetTransformFeedbackVaryingMappedName(const gl::SharedCompiledShaderState &shaderState, const std::string &tfVaryingName) { ASSERT(shaderState->shaderType != gl::ShaderType::Fragment && shaderState->shaderType != gl::ShaderType::Compute); const auto &varyings = shaderState->outputVaryings; auto bracketPos = tfVaryingName.find("["); if (bracketPos != std::string::npos) { auto tfVaryingBaseName = tfVaryingName.substr(0, bracketPos); for (const auto &varying : varyings) { if (varying.name == tfVaryingBaseName) { std::string mappedNameWithArrayIndex = varying.mappedName + tfVaryingName.substr(bracketPos); return mappedNameWithArrayIndex; } } } else { for (const auto &varying : varyings) { if (varying.name == tfVaryingName) { return varying.mappedName; } else if (varying.isStruct()) { GLuint fieldIndex = 0; const auto *field = varying.findField(tfVaryingName, &fieldIndex); if (field == nullptr) { continue; } ASSERT(field != nullptr && !field->isStruct() && (!field->isArray() || varying.isShaderIOBlock)); std::string mappedName; // If it's an I/O block without an instance name, don't include the block name. if (!varying.isShaderIOBlock || !varying.name.empty()) { mappedName = varying.isShaderIOBlock ? varying.mappedStructOrBlockName : varying.mappedName; mappedName += '.'; } return mappedName + field->mappedName; } } } UNREACHABLE(); return std::string(); } } // anonymous namespace class ProgramGL::LinkTaskGL final : public LinkTask { public: LinkTaskGL(ProgramGL *program, bool hasNativeParallelCompile, const FunctionsGL *functions, const gl::Extensions &extensions, GLuint programID) : mProgram(program), mHasNativeParallelCompile(hasNativeParallelCompile), mFunctions(functions), mExtensions(extensions), mProgramID(programID) {} ~LinkTaskGL() override = default; void link(const gl::ProgramLinkedResources &resources, const gl::ProgramMergedVaryings &mergedVaryings, std::vector> *linkSubTasksOut, std::vector> *postLinkSubTasksOut) override { ASSERT(linkSubTasksOut && linkSubTasksOut->empty()); ASSERT(postLinkSubTasksOut && postLinkSubTasksOut->empty()); mResult = mProgram->linkJobImpl(mExtensions); // If there is no native parallel compile, do the post-link right away. if (mResult == angle::Result::Continue && !mHasNativeParallelCompile) { mResult = mProgram->postLinkJobImpl(resources); } // See comment on mResources mResources = &resources; return; } angle::Result getResult(const gl::Context *context, gl::InfoLog &infoLog) override { ANGLE_TRACE_EVENT0("gpu.angle", "LinkTaskGL::getResult"); if (mResult == angle::Result::Continue && mHasNativeParallelCompile) { mResult = mProgram->postLinkJobImpl(*mResources); } return mResult; } bool isLinkingInternally() override { GLint completionStatus = GL_TRUE; if (mHasNativeParallelCompile) { mFunctions->getProgramiv(mProgramID, GL_COMPLETION_STATUS, &completionStatus); } return completionStatus == GL_FALSE; } private: ProgramGL *mProgram; const bool mHasNativeParallelCompile; const FunctionsGL *mFunctions; const gl::Extensions &mExtensions; const GLuint mProgramID; angle::Result mResult = angle::Result::Continue; // Note: resources are kept alive by the front-end for the entire duration of the link, // including during resolve when getResult() and postLink() are called. const gl::ProgramLinkedResources *mResources = nullptr; }; ProgramGL::ProgramGL(const gl::ProgramState &data, const FunctionsGL *functions, const angle::FeaturesGL &features, StateManagerGL *stateManager, const std::shared_ptr &renderer) : ProgramImpl(data), mFunctions(functions), mFeatures(features), mStateManager(stateManager), mProgramID(0), mRenderer(renderer) { ASSERT(mFunctions); ASSERT(mStateManager); mProgramID = mFunctions->createProgram(); } ProgramGL::~ProgramGL() = default; void ProgramGL::destroy(const gl::Context *context) { mFunctions->deleteProgram(mProgramID); mProgramID = 0; } angle::Result ProgramGL::load(const gl::Context *context, gl::BinaryInputStream *stream, std::shared_ptr *loadTaskOut, egl::CacheGetResult *resultOut) { ANGLE_TRACE_EVENT0("gpu.angle", "ProgramGL::load"); ProgramExecutableGL *executableGL = getExecutable(); // Read the binary format, size and blob GLenum binaryFormat = stream->readInt(); GLint binaryLength = stream->readInt(); const uint8_t *binary = stream->data() + stream->offset(); stream->skip(binaryLength); // Load the binary mFunctions->programBinary(mProgramID, binaryFormat, binary, binaryLength); // Verify that the program linked. Ensure failure if program binary is intentionally corrupted, // even if the corruption didn't really cause a failure. if (!checkLinkStatus() || GetImplAs(context)->getFeaturesGL().corruptProgramBinaryForTesting.enabled) { return angle::Result::Continue; } executableGL->postLink(mFunctions, mStateManager, mFeatures, mProgramID); executableGL->reapplyUBOBindings(); *loadTaskOut = {}; *resultOut = egl::CacheGetResult::Success; return angle::Result::Continue; } void ProgramGL::save(const gl::Context *context, gl::BinaryOutputStream *stream) { GLint binaryLength = 0; mFunctions->getProgramiv(mProgramID, GL_PROGRAM_BINARY_LENGTH, &binaryLength); std::vector binary(std::max(binaryLength, 1)); GLenum binaryFormat = GL_NONE; mFunctions->getProgramBinary(mProgramID, binaryLength, &binaryLength, &binaryFormat, binary.data()); stream->writeInt(binaryFormat); stream->writeInt(binaryLength); const angle::FeaturesGL &features = GetImplAs(context)->getFeaturesGL(); if (features.corruptProgramBinaryForTesting.enabled) { // Random corruption of the binary data. Corrupting the first byte has proven to be enough // to later cause the binary load to fail on most platforms. ++binary[0]; } stream->writeBytes(binary.data(), binaryLength); // Re-apply UBO bindings to work around driver bugs. if (features.reapplyUBOBindingsAfterUsingBinaryProgram.enabled) { getExecutable()->reapplyUBOBindings(); } } void ProgramGL::setBinaryRetrievableHint(bool retrievable) { // glProgramParameteri isn't always available on ES backends. if (mFunctions->programParameteri) { mFunctions->programParameteri(mProgramID, GL_PROGRAM_BINARY_RETRIEVABLE_HINT, retrievable ? GL_TRUE : GL_FALSE); } } void ProgramGL::setSeparable(bool separable) { mFunctions->programParameteri(mProgramID, GL_PROGRAM_SEPARABLE, separable ? GL_TRUE : GL_FALSE); } void ProgramGL::prepareForLink(const gl::ShaderMap &shaders) { for (gl::ShaderType shaderType : gl::AllShaderTypes()) { mAttachedShaders[shaderType] = 0; if (shaders[shaderType] != nullptr) { const ShaderGL *shaderGL = GetAs(shaders[shaderType]); mAttachedShaders[shaderType] = shaderGL->getShaderID(); } } } angle::Result ProgramGL::link(const gl::Context *context, std::shared_ptr *linkTaskOut) { ANGLE_TRACE_EVENT0("gpu.angle", "ProgramGL::link"); *linkTaskOut = std::make_shared(this, mRenderer->hasNativeParallelCompile(), mFunctions, context->getExtensions(), mProgramID); return angle::Result::Continue; } angle::Result ProgramGL::linkJobImpl(const gl::Extensions &extensions) { ANGLE_TRACE_EVENT0("gpu.angle", "ProgramGL::linkJobImpl"); const gl::ProgramExecutable &executable = mState.getExecutable(); ProgramExecutableGL *executableGL = getExecutable(); if (mAttachedShaders[gl::ShaderType::Compute] != 0) { mFunctions->attachShader(mProgramID, mAttachedShaders[gl::ShaderType::Compute]); } else { // Set the transform feedback state std::vector transformFeedbackVaryingMappedNames; const gl::ShaderType tfShaderType = executable.hasLinkedShaderStage(gl::ShaderType::Geometry) ? gl::ShaderType::Geometry : gl::ShaderType::Vertex; const gl::SharedCompiledShaderState &tfShaderState = mState.getAttachedShader(tfShaderType); for (const auto &tfVarying : mState.getTransformFeedbackVaryingNames()) { std::string tfVaryingMappedName = GetTransformFeedbackVaryingMappedName(tfShaderState, tfVarying); transformFeedbackVaryingMappedNames.push_back(tfVaryingMappedName); } if (transformFeedbackVaryingMappedNames.empty()) { // Only clear the transform feedback state if transform feedback varyings have already // been set. if (executableGL->mHasAppliedTransformFeedbackVaryings) { ASSERT(mFunctions->transformFeedbackVaryings); mFunctions->transformFeedbackVaryings(mProgramID, 0, nullptr, mState.getTransformFeedbackBufferMode()); executableGL->mHasAppliedTransformFeedbackVaryings = false; } } else { ASSERT(mFunctions->transformFeedbackVaryings); std::vector transformFeedbackVaryings; for (const auto &varying : transformFeedbackVaryingMappedNames) { transformFeedbackVaryings.push_back(varying.c_str()); } mFunctions->transformFeedbackVaryings( mProgramID, static_cast(transformFeedbackVaryingMappedNames.size()), &transformFeedbackVaryings[0], mState.getTransformFeedbackBufferMode()); executableGL->mHasAppliedTransformFeedbackVaryings = true; } for (const gl::ShaderType shaderType : gl::kAllGraphicsShaderTypes) { if (mAttachedShaders[shaderType] != 0) { mFunctions->attachShader(mProgramID, mAttachedShaders[shaderType]); } } // Bind attribute locations to match the GL layer. for (const gl::ProgramInput &attribute : executable.getProgramInputs()) { if (!attribute.isActive() || attribute.isBuiltIn()) { continue; } mFunctions->bindAttribLocation(mProgramID, attribute.getLocation(), attribute.mappedName.c_str()); } // Bind the secondary fragment color outputs defined in EXT_blend_func_extended. We only use // the API to bind fragment output locations in case EXT_blend_func_extended is enabled. // Otherwise shader-assigned locations will work. if (extensions.blendFuncExtendedEXT) { const gl::SharedCompiledShaderState &fragmentShader = mState.getAttachedShader(gl::ShaderType::Fragment); if (fragmentShader && fragmentShader->shaderVersion == 100 && mFunctions->standard == STANDARD_GL_DESKTOP) { ASSERT(!mFeatures.avoidBindFragDataLocation.enabled); const auto &shaderOutputs = fragmentShader->activeOutputVariables; for (const auto &output : shaderOutputs) { // TODO(http://anglebug.com/40644593) This could be cleaner if the transformed // names would be set correctly in ShaderVariable::mappedName. This would // require some refactoring in the translator. Adding a mapped name dictionary // for builtins into the symbol table would be one fairly clean way to do it. if (output.name == "gl_SecondaryFragColorEXT") { mFunctions->bindFragDataLocationIndexed(mProgramID, 0, 0, "webgl_FragColor"); mFunctions->bindFragDataLocationIndexed(mProgramID, 0, 1, "webgl_SecondaryFragColor"); } else if (output.name == "gl_SecondaryFragDataEXT") { // Basically we should have a loop here going over the output // array binding "webgl_FragData[i]" and "webgl_SecondaryFragData[i]" array // indices to the correct color buffers and color indices. // However I'm not sure if this construct is legal or not, neither ARB or // EXT version of the spec mention this. They only mention that // automatically assigned array locations for ESSL 3.00 output arrays need // to have contiguous locations. // // In practice it seems that binding array members works on some drivers and // fails on others. One option could be to modify the shader translator to // expand the arrays into individual output variables instead of using an // array. // // For now we're going to have a limitation of assuming that // GL_MAX_DUAL_SOURCE_DRAW_BUFFERS is *always* 1 and then only bind the // basename of the variable ignoring any indices. This appears to work // uniformly. ASSERT(output.isArray() && output.getOutermostArraySize() == 1); mFunctions->bindFragDataLocationIndexed(mProgramID, 0, 0, "webgl_FragData"); mFunctions->bindFragDataLocationIndexed(mProgramID, 0, 1, "webgl_SecondaryFragData"); } } } else if (fragmentShader && fragmentShader->shaderVersion >= 300) { // ESSL 3.00 and up. auto assignOutputLocations = [this](const std::vector &locations) { const gl::ProgramExecutable &executable = mState.getExecutable(); for (size_t outputLocationIndex = 0u; outputLocationIndex < locations.size(); ++outputLocationIndex) { const gl::VariableLocation &outputLocation = locations[outputLocationIndex]; if (outputLocation.arrayIndex != 0 || !outputLocation.used() || outputLocation.ignored) { continue; } const gl::ProgramOutput &outputVar = executable.getOutputVariables()[outputLocation.index]; if (outputVar.pod.hasShaderAssignedLocation) { continue; } // We only need to assign the location and index via the API if the // variable doesn't have a shader-assigned location. ASSERT(outputVar.pod.index != -1); // Avoid calling glBindFragDataLocationIndexed unless the application // did it explicitly to avoid Qualcomm driver bugs with multiple render // targets. if (mFeatures.avoidBindFragDataLocation.enabled && !outputVar.pod.hasApiAssignedLocation) { continue; } mFunctions->bindFragDataLocationIndexed( mProgramID, static_cast(outputLocationIndex), outputVar.pod.index, outputVar.mappedName.c_str()); } }; ANGLE_GL_CLEAR_ERRORS(mFunctions); assignOutputLocations(executable.getOutputLocations()); assignOutputLocations(executable.getSecondaryOutputLocations()); GLenum error = mFunctions->getError(); if (error != GL_NO_ERROR) { executable.getInfoLog() << "Failed to bind frag data locations. See http://anglebug.com/42267082"; return angle::Result::Stop; } } } } mFunctions->linkProgram(mProgramID); return angle::Result::Continue; } angle::Result ProgramGL::postLinkJobImpl(const gl::ProgramLinkedResources &resources) { ANGLE_TRACE_EVENT0("gpu.angle", "ProgramGL::postLinkJobImpl"); if (mAttachedShaders[gl::ShaderType::Compute] != 0) { mFunctions->detachShader(mProgramID, mAttachedShaders[gl::ShaderType::Compute]); } else { for (const gl::ShaderType shaderType : gl::kAllGraphicsShaderTypes) { if (mAttachedShaders[shaderType] != 0) { mFunctions->detachShader(mProgramID, mAttachedShaders[shaderType]); } } } // Verify the link if (!checkLinkStatus()) { return angle::Result::Stop; } if (mFeatures.alwaysCallUseProgramAfterLink.enabled) { mStateManager->forceUseProgram(mProgramID); } linkResources(resources); getExecutable()->postLink(mFunctions, mStateManager, mFeatures, mProgramID); return angle::Result::Continue; } GLboolean ProgramGL::validate(const gl::Caps & /*caps*/) { // TODO(jmadill): implement validate return true; } bool ProgramGL::getUniformBlockSize(const std::string & /* blockName */, const std::string &blockMappedName, size_t *sizeOut) const { ASSERT(mProgramID != 0u); GLuint blockIndex = mFunctions->getUniformBlockIndex(mProgramID, blockMappedName.c_str()); if (blockIndex == GL_INVALID_INDEX) { *sizeOut = 0; return false; } GLint dataSize = 0; mFunctions->getActiveUniformBlockiv(mProgramID, blockIndex, GL_UNIFORM_BLOCK_DATA_SIZE, &dataSize); *sizeOut = static_cast(dataSize); return true; } bool ProgramGL::getUniformBlockMemberInfo(const std::string & /* memberUniformName */, const std::string &memberUniformMappedName, sh::BlockMemberInfo *memberInfoOut) const { GLuint uniformIndex; const GLchar *memberNameGLStr = memberUniformMappedName.c_str(); mFunctions->getUniformIndices(mProgramID, 1, &memberNameGLStr, &uniformIndex); if (uniformIndex == GL_INVALID_INDEX) { *memberInfoOut = sh::kDefaultBlockMemberInfo; return false; } mFunctions->getActiveUniformsiv(mProgramID, 1, &uniformIndex, GL_UNIFORM_OFFSET, &memberInfoOut->offset); mFunctions->getActiveUniformsiv(mProgramID, 1, &uniformIndex, GL_UNIFORM_ARRAY_STRIDE, &memberInfoOut->arrayStride); mFunctions->getActiveUniformsiv(mProgramID, 1, &uniformIndex, GL_UNIFORM_MATRIX_STRIDE, &memberInfoOut->matrixStride); // TODO(jmadill): possibly determine this at the gl::Program level. GLint isRowMajorMatrix = 0; mFunctions->getActiveUniformsiv(mProgramID, 1, &uniformIndex, GL_UNIFORM_IS_ROW_MAJOR, &isRowMajorMatrix); memberInfoOut->isRowMajorMatrix = gl::ConvertToBool(isRowMajorMatrix); return true; } bool ProgramGL::getShaderStorageBlockMemberInfo(const std::string & /* memberName */, const std::string &memberUniformMappedName, sh::BlockMemberInfo *memberInfoOut) const { const GLchar *memberNameGLStr = memberUniformMappedName.c_str(); GLuint index = mFunctions->getProgramResourceIndex(mProgramID, GL_BUFFER_VARIABLE, memberNameGLStr); if (index == GL_INVALID_INDEX) { *memberInfoOut = sh::kDefaultBlockMemberInfo; return false; } constexpr int kPropCount = 5; std::array props = { {GL_ARRAY_STRIDE, GL_IS_ROW_MAJOR, GL_MATRIX_STRIDE, GL_OFFSET, GL_TOP_LEVEL_ARRAY_STRIDE}}; std::array params; GLsizei length; mFunctions->getProgramResourceiv(mProgramID, GL_BUFFER_VARIABLE, index, kPropCount, props.data(), kPropCount, &length, params.data()); ASSERT(kPropCount == length); memberInfoOut->arrayStride = params[0]; memberInfoOut->isRowMajorMatrix = params[1] != 0; memberInfoOut->matrixStride = params[2]; memberInfoOut->offset = params[3]; memberInfoOut->topLevelArrayStride = params[4]; return true; } bool ProgramGL::getShaderStorageBlockSize(const std::string &name, const std::string &mappedName, size_t *sizeOut) const { const GLchar *nameGLStr = mappedName.c_str(); GLuint index = mFunctions->getProgramResourceIndex(mProgramID, GL_SHADER_STORAGE_BLOCK, nameGLStr); if (index == GL_INVALID_INDEX) { *sizeOut = 0; return false; } GLenum prop = GL_BUFFER_DATA_SIZE; GLsizei length = 0; GLint dataSize = 0; mFunctions->getProgramResourceiv(mProgramID, GL_SHADER_STORAGE_BLOCK, index, 1, &prop, 1, &length, &dataSize); *sizeOut = static_cast(dataSize); return true; } void ProgramGL::getAtomicCounterBufferSizeMap(std::map *sizeMapOut) const { if (mFunctions->getProgramInterfaceiv == nullptr) { return; } int resourceCount = 0; mFunctions->getProgramInterfaceiv(mProgramID, GL_ATOMIC_COUNTER_BUFFER, GL_ACTIVE_RESOURCES, &resourceCount); for (int index = 0; index < resourceCount; index++) { constexpr int kPropCount = 2; std::array props = {{GL_BUFFER_BINDING, GL_BUFFER_DATA_SIZE}}; std::array params; GLsizei length; mFunctions->getProgramResourceiv(mProgramID, GL_ATOMIC_COUNTER_BUFFER, index, kPropCount, props.data(), kPropCount, &length, params.data()); ASSERT(kPropCount == length); int bufferBinding = params[0]; unsigned int bufferDataSize = params[1]; sizeMapOut->insert(std::pair(bufferBinding, bufferDataSize)); } } bool ProgramGL::checkLinkStatus() { GLint linkStatus = GL_FALSE; mFunctions->getProgramiv(mProgramID, GL_LINK_STATUS, &linkStatus); if (linkStatus == GL_FALSE) { // Linking or program binary loading failed, put the error into the info log. GLint infoLogLength = 0; mFunctions->getProgramiv(mProgramID, GL_INFO_LOG_LENGTH, &infoLogLength); // Info log length includes the null terminator, so 1 means that the info log is an empty // string. if (infoLogLength > 1) { std::vector buf(infoLogLength); mFunctions->getProgramInfoLog(mProgramID, infoLogLength, nullptr, &buf[0]); mState.getExecutable().getInfoLog() << buf.data(); WARN() << "Program link or binary loading failed: " << buf.data(); } else { WARN() << "Program link or binary loading failed with no info log."; } // This may happen under normal circumstances if we're loading program binaries and the // driver or hardware has changed. ASSERT(mProgramID != 0); return false; } return true; } void ProgramGL::markUnusedUniformLocations(std::vector *uniformLocations, std::vector *samplerBindings, std::vector *imageBindings) { const gl::ProgramExecutable &executable = mState.getExecutable(); const ProgramExecutableGL *executableGL = getExecutable(); GLint maxLocation = static_cast(uniformLocations->size()); for (GLint location = 0; location < maxLocation; ++location) { if (executableGL->mUniformRealLocationMap[location] == -1) { auto &locationRef = (*uniformLocations)[location]; if (executable.isSamplerUniformIndex(locationRef.index)) { GLuint samplerIndex = executable.getSamplerIndexFromUniformIndex(locationRef.index); gl::SamplerBinding &samplerBinding = (*samplerBindings)[samplerIndex]; if (locationRef.arrayIndex < static_cast(samplerBinding.textureUnitsCount)) { // Crop unused sampler bindings in the sampler array. SetBitField(samplerBinding.textureUnitsCount, locationRef.arrayIndex); } } else if (executable.isImageUniformIndex(locationRef.index)) { GLuint imageIndex = executable.getImageIndexFromUniformIndex(locationRef.index); gl::ImageBinding &imageBinding = (*imageBindings)[imageIndex]; if (locationRef.arrayIndex < imageBinding.boundImageUnits.size()) { // Crop unused image bindings in the image array. imageBinding.boundImageUnits.resize(locationRef.arrayIndex); } } // If the location has been previously bound by a glBindUniformLocation call, it should // be marked as ignored. Otherwise it's unused. if (mState.getUniformLocationBindings().getBindingByLocation(location) != -1) { locationRef.markIgnored(); } else { locationRef.markUnused(); } } } } void ProgramGL::linkResources(const gl::ProgramLinkedResources &resources) { // Gather interface block info. auto getUniformBlockSize = [this](const std::string &name, const std::string &mappedName, size_t *sizeOut) { return this->getUniformBlockSize(name, mappedName, sizeOut); }; auto getUniformBlockMemberInfo = [this](const std::string &name, const std::string &mappedName, sh::BlockMemberInfo *infoOut) { return this->getUniformBlockMemberInfo(name, mappedName, infoOut); }; resources.uniformBlockLinker.linkBlocks(getUniformBlockSize, getUniformBlockMemberInfo); auto getShaderStorageBlockSize = [this](const std::string &name, const std::string &mappedName, size_t *sizeOut) { return this->getShaderStorageBlockSize(name, mappedName, sizeOut); }; auto getShaderStorageBlockMemberInfo = [this](const std::string &name, const std::string &mappedName, sh::BlockMemberInfo *infoOut) { return this->getShaderStorageBlockMemberInfo(name, mappedName, infoOut); }; resources.shaderStorageBlockLinker.linkBlocks(getShaderStorageBlockSize, getShaderStorageBlockMemberInfo); // Gather atomic counter buffer info. std::map sizeMap; getAtomicCounterBufferSizeMap(&sizeMap); resources.atomicCounterBufferLinker.link(sizeMap); const gl::SharedCompiledShaderState &fragmentShader = mState.getAttachedShader(gl::ShaderType::Fragment); if (fragmentShader != nullptr) { resources.pixelLocalStorageLinker.link(fragmentShader->pixelLocalStorageFormats); } } void ProgramGL::onUniformBlockBinding(gl::UniformBlockIndex uniformBlockIndex) { getExecutable()->mDirtyUniformBlockBindings.set(uniformBlockIndex.value); } } // namespace rx