// Copyright 2022 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include #include #include extern XNN_INTERNAL const uint16_t xnn_table_vlog[129]; class VLogMicrokernelTester { public: inline VLogMicrokernelTester& batch(size_t batch) { assert(batch != 0); this->batch_ = batch; return *this; } inline size_t batch() const { return this->batch_; } inline VLogMicrokernelTester& input_lshift(uint32_t input_lshift) { assert(input_lshift < 32); this->input_lshift_ = input_lshift; return *this; } inline uint32_t input_lshift() const { return this->input_lshift_; } inline VLogMicrokernelTester& output_scale(uint32_t output_scale) { this->output_scale_ = output_scale; return *this; } inline uint32_t output_scale() const { return this->output_scale_; } inline VLogMicrokernelTester& inplace(bool inplace) { this->inplace_ = inplace; return *this; } inline bool inplace() const { return this->inplace_; } inline VLogMicrokernelTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } inline size_t iterations() const { return this->iterations_; } void Test(xnn_u32_vlog_ukernel_function vlog) const { std::random_device random_device; auto rng = std::mt19937(random_device()); auto i16rng = std::bind(std::uniform_int_distribution(), std::ref(rng)); auto i32rng = std::bind(std::uniform_int_distribution(), std::ref(rng)); std::vector x(batch() + XNN_EXTRA_BYTES / sizeof(uint32_t)); std::vector y(batch() * (inplace() ? sizeof(uint32_t) / sizeof(uint16_t) : 1) + XNN_EXTRA_BYTES / sizeof(uint32_t)); std::vector y_ref(batch()); const uint32_t* x_data = inplace() ? reinterpret_cast(y.data()) : x.data(); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(x.begin(), x.end(), std::ref(i32rng)); std::generate(y.begin(), y.end(), std::ref(i16rng)); std::generate(y_ref.begin(), y_ref.end(), std::ref(i16rng)); // Compute reference results. for (size_t n = 0; n < batch(); n++) { const uint32_t x_value = x_data[n]; const uint32_t scaled = x_value << input_lshift(); uint32_t log_value = 0; if (scaled != 0) { const uint32_t out_scale = output_scale(); const int log_scale = 65536; const int log_scale_log2 = 16; const int log_coeff = 45426; const uint32_t log2x = math_clz_nonzero_u32(scaled) ^ 31; // log2 of scaled assert(log2x < 32); // Number of segments in the log lookup table. The table will be log_segments+1 // in length (with some padding). const int log_segments_log2 = 7; // Part 1 uint32_t frac = scaled - (UINT32_C(1) << log2x); // Shift the fractional part into msb of 16 bits frac = XNN_UNPREDICTABLE(log2x < log_scale_log2) ? (frac << (log_scale_log2 - log2x)) : (frac >> (log2x - log_scale_log2)); // Part 2 const uint32_t base_seg = frac >> (log_scale_log2 - log_segments_log2); const uint32_t seg_unit = (UINT32_C(1) << log_scale_log2) >> log_segments_log2; assert(128 == (1 << log_segments_log2)); assert(base_seg < (1 << log_segments_log2)); const uint32_t c0 = xnn_table_vlog[base_seg]; const uint32_t c1 = xnn_table_vlog[base_seg + 1]; const uint32_t seg_base = seg_unit * base_seg; const uint32_t rel_pos = ((c1 - c0) * (frac - seg_base)) >> log_scale_log2; const uint32_t fraction = frac + c0 + rel_pos; const uint32_t log2 = (log2x << log_scale_log2) + fraction; const uint32_t round = log_scale / 2; const uint32_t loge = (((uint64_t) log_coeff) * log2 + round) >> log_scale_log2; // Finally scale to our output scale log_value = (out_scale * loge + round) >> log_scale_log2; } const uint32_t vout = math_min_u32(log_value, (uint32_t) INT16_MAX); y_ref[n] = vout; } // Call optimized micro-kernel. vlog(batch(), x_data, input_lshift(), output_scale(), y.data()); // Verify results. for (size_t n = 0; n < batch(); n++) { ASSERT_EQ(y[n], y_ref[n]) << ", input_lshift " << input_lshift() << ", output_scale " << output_scale() << ", batch " << n << " / " << batch(); } } } private: size_t batch_{1}; uint32_t input_lshift_{4}; uint32_t output_scale_{16}; bool inplace_{false}; size_t iterations_{15}; };