// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include namespace xnnpack { enum class TensorType { kDense, kSparse, }; struct Padding { uint32_t top; uint32_t right; uint32_t bottom; uint32_t left; }; struct HeightWidth { uint32_t height; uint32_t width; }; using Kernel = HeightWidth; using Subsampling = HeightWidth; using Dilation = HeightWidth; using Upsampling = HeightWidth; using Adjustment = HeightWidth; struct ConvolutionParams { Padding padding; Kernel kernel; Subsampling subsampling; Dilation dilation; uint32_t groups; uint32_t group_input_channels; uint32_t group_output_channels; }; struct DeconvolutionParams { Padding padding; Adjustment adjustment; Kernel kernel; Upsampling upsampling; Dilation dilation; uint32_t groups; uint32_t group_input_channels; uint32_t group_output_channels; }; struct DepthwiseConvolutionParams { Padding padding; Kernel kernel; Subsampling subsampling; Dilation dilation; uint32_t depth_multiplier; uint32_t input_channels; }; class SubgraphTester { public: explicit SubgraphTester(uint32_t external_value_ids) { xnn_status status = xnn_initialize(nullptr); EXPECT_EQ(status, xnn_status_success); xnn_subgraph_t subgraph_ptr = nullptr; status = xnn_create_subgraph(external_value_ids, 0 /* flags */, &subgraph_ptr); EXPECT_EQ(status, xnn_status_success); subgraph_.reset(subgraph_ptr); std::random_device random_device; rng_ = std::mt19937(random_device()); } inline SubgraphTester& AddDynamicTensorF32(const std::vector& dims, uint32_t external_id, uint32_t flags = 0) { uint32_t id_out = 0; const xnn_status status = xnn_define_tensor_value(subgraph_.get(), xnn_datatype_fp32, dims.size(), dims.data(), nullptr, external_id, flags, &id_out); EXPECT_EQ(status, xnn_status_success); EXPECT_EQ(id_out, external_id); return *this; } inline SubgraphTester& AddStaticTensorF32(const std::vector& dims, TensorType tensor_type, uint32_t external_id, uint32_t flags = 0) { const size_t num_elements = NumElements(dims); static_data_.emplace_back(num_elements * sizeof(float)); float* data = reinterpret_cast(static_data_.back().data()); if (tensor_type == TensorType::kDense) { std::generate(data, data + num_elements, [&]() { return f32dist(rng_); }); } else { // Create tensor with 90% sparsity in two steps: // 1. Generate non-zero elements in the beginning of the vector // 2. Randomize positions of non-zero elements const size_t num_nonzero_elements = num_elements / 10; std::generate(data, data + num_nonzero_elements, [&]() { return f32dist(rng_); }); std::shuffle(data, data + num_elements, rng_); } uint32_t id_out; const xnn_status status = xnn_define_tensor_value(subgraph_.get(), xnn_datatype_fp32, dims.size(), dims.data(), data, external_id, flags, &id_out); EXPECT_EQ(status, xnn_status_success); EXPECT_EQ(id_out, external_id); return *this; } inline SubgraphTester& AddInputTensorF32(const std::vector& dims, uint32_t external_id) { AddDynamicTensorF32(dims, external_id, XNN_VALUE_FLAG_EXTERNAL_INPUT); size_t num_elements = NumElements(dims); auto input = std::vector(num_elements * sizeof(float) + XNN_EXTRA_BYTES * sizeof(char)); float* data = reinterpret_cast(input.data()); std::generate(data, data + num_elements, [&]() { return f32dist(rng_); }); auto it = external_tensors_.insert({external_id, input}); EXPECT_TRUE(it.second); return *this; } inline SubgraphTester& AddOutputTensorF32(const std::vector& dims, uint32_t external_id) { output_id_ = external_id; AddDynamicTensorF32(dims, external_id, XNN_VALUE_FLAG_EXTERNAL_OUTPUT); size_t num_elements = NumElements(dims); auto output = std::vector(num_elements * sizeof(float)); float* data = reinterpret_cast(output.data()); std::fill(data, data + num_elements, std::nanf("")); auto it = external_tensors_.insert({external_id, output}); EXPECT_TRUE(it.second); return *this; } inline SubgraphTester& AddConstantPad( const size_t *pre_paddings, const size_t *post_paddings, float padding_value, uint32_t input_id, uint32_t output_id) { const xnn_status status = xnn_define_static_constant_pad( subgraph_.get(), pre_paddings, post_paddings, padding_value, input_id, output_id, 0 /* flags */); EXPECT_EQ(status, xnn_status_success); return *this; } inline SubgraphTester& AddConvolution2D( ConvolutionParams params, uint32_t input_id, uint32_t filter_id, uint32_t bias_id, uint32_t output_id) { const xnn_status status = xnn_define_convolution_2d( subgraph_.get(), params.padding.top, params.padding.right, params.padding.bottom, params.padding.left, params.kernel.height, params.kernel.width, params.subsampling.height, params.subsampling.width, params.dilation.height, params.dilation.width, params.groups, params.group_input_channels, params.group_output_channels, -std::numeric_limits::infinity(), std::numeric_limits::infinity(), input_id, filter_id, bias_id, output_id, 0 /* flags */); EXPECT_EQ(status, xnn_status_success); return *this; } inline SubgraphTester& AddDepthwiseConvolution2D( DepthwiseConvolutionParams params, uint32_t input_id, uint32_t filter_id, uint32_t bias_id, uint32_t output_id) { const xnn_status status = xnn_define_depthwise_convolution_2d( subgraph_.get(), params.padding.top, params.padding.right, params.padding.bottom, params.padding.left, params.kernel.height, params.kernel.width, params.subsampling.height, params.subsampling.width, params.dilation.height, params.dilation.width, params.depth_multiplier, params.input_channels, -std::numeric_limits::infinity(), std::numeric_limits::infinity(), input_id, filter_id, bias_id, output_id, 0 /* flags */); EXPECT_EQ(status, xnn_status_success); return *this; } inline SubgraphTester& AddAddition(uint32_t input_id1, uint32_t input_id2, uint32_t output_id) { const xnn_status status = xnn_define_add2(subgraph_.get(), -std::numeric_limits::infinity(), std::numeric_limits::infinity(), input_id1, input_id2, output_id, 0 /* flags */); EXPECT_EQ(status, xnn_status_success); return *this; } inline SubgraphTester& AddAveragePooling2D( uint32_t input_padding_top, uint32_t input_padding_right, uint32_t input_padding_bottom, uint32_t input_padding_left, uint32_t pooling_height, uint32_t pooling_width, uint32_t stride_height, uint32_t stride_width, uint32_t input_id, uint32_t output_id) { const xnn_status status = xnn_define_average_pooling_2d( subgraph_.get(), input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, pooling_height, pooling_width, stride_height, stride_width, -std::numeric_limits::infinity(), std::numeric_limits::infinity(), input_id, output_id, 0 /* flags */); EXPECT_EQ(status, xnn_status_success); return *this; } inline SubgraphTester& AddClamp(float output_min, float output_max, uint32_t input_id, uint32_t output_id) { const xnn_status status = xnn_define_clamp(subgraph_.get(), output_min, output_max, input_id, output_id, 0 /* flags */); EXPECT_EQ(status, xnn_status_success); return *this; } inline SubgraphTester& AddDeconvolution2D( uint32_t input_padding_top, uint32_t input_padding_right, uint32_t input_padding_bottom, uint32_t input_padding_left, uint32_t adjustment_height, uint32_t adjustment_width, uint32_t kernel_height, uint32_t kernel_width, uint32_t upsampling_height, uint32_t upsampling_width, uint32_t dilation_height, uint32_t dilation_width, uint32_t groups, size_t group_input_channels, size_t group_output_channels, uint32_t input_id, uint32_t filter_id, uint32_t bias_id, uint32_t output_id) { const xnn_status status = xnn_define_deconvolution_2d( subgraph_.get(), input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, adjustment_height, adjustment_width, kernel_height, kernel_width, upsampling_height, upsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, -std::numeric_limits::infinity(), std::numeric_limits::infinity(), input_id, filter_id, bias_id, output_id, 0 /* flags */); EXPECT_EQ(status, xnn_status_success); return *this; } inline SubgraphTester& AddDeconvolution2D( DeconvolutionParams params, uint32_t input_id, uint32_t filter_id, uint32_t bias_id, uint32_t output_id) { const xnn_status status = xnn_define_deconvolution_2d( subgraph_.get(), params.padding.top, params.padding.right, params.padding.bottom, params.padding.left, params.adjustment.height, params.adjustment.width, params.kernel.height, params.kernel.width, params.upsampling.height, params.upsampling.width, params.dilation.height, params.dilation.width, params.groups, params.group_input_channels, params.group_output_channels, -std::numeric_limits::infinity(), std::numeric_limits::infinity(), input_id, filter_id, bias_id, output_id, 0 /* flags */); EXPECT_EQ(status, xnn_status_success); return *this; } inline SubgraphTester& AddDivide(uint32_t input_id1, uint32_t input_id2, uint32_t output_id) { const xnn_status status = xnn_define_divide(subgraph_.get(), -std::numeric_limits::infinity(), std::numeric_limits::infinity(), input_id1, input_id2, output_id, 0 /* flags */); EXPECT_EQ(status, xnn_status_success); return *this; } inline SubgraphTester& AddFullyConnected( uint32_t input_id, uint32_t filter_id, uint32_t bias_id, uint32_t output_id) { const xnn_status status = xnn_define_fully_connected( subgraph_.get(), -std::numeric_limits::infinity(), std::numeric_limits::infinity(), input_id, filter_id, bias_id, output_id, 0 /* flags */); EXPECT_EQ(status, xnn_status_success); return *this; } inline SubgraphTester& AddGlobalAveragePooling(uint32_t input_id, uint32_t output_id) { const xnn_status status = xnn_define_global_average_pooling_2d( subgraph_.get(), -std::numeric_limits::infinity(), std::numeric_limits::infinity(), input_id, output_id, 0 /* flags */); EXPECT_EQ(status, xnn_status_success); return *this; } inline SubgraphTester& AddMaxPooling2D( uint32_t input_padding_top, uint32_t input_padding_right, uint32_t input_padding_bottom, uint32_t input_padding_left, uint32_t pooling_height, uint32_t pooling_width, uint32_t stride_height, uint32_t stride_width, uint32_t dilation_height, uint32_t dilation_width, uint32_t input_id, uint32_t output_id) { const xnn_status status = xnn_define_max_pooling_2d( subgraph_.get(), input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, pooling_height, pooling_width, stride_height, stride_width, dilation_height, dilation_width, -std::numeric_limits::infinity(), std::numeric_limits::infinity(), input_id, output_id, 0 /* flags */); EXPECT_EQ(status, xnn_status_success); return *this; } inline SubgraphTester& AddMultiply(uint32_t input_id1, uint32_t input_id2, uint32_t output_id) { const xnn_status status = xnn_define_multiply2(subgraph_.get(), -std::numeric_limits::infinity(), std::numeric_limits::infinity(), input_id1, input_id2, output_id, 0 /* flags */); EXPECT_EQ(status, xnn_status_success); return *this; } inline SubgraphTester& AddSubtract(uint32_t input_id1, uint32_t input_id2, uint32_t output_id) { const xnn_status status = xnn_define_subtract(subgraph_.get(), -std::numeric_limits::infinity(), std::numeric_limits::infinity(), input_id1, input_id2, output_id, 0 /* flags */); EXPECT_EQ(status, xnn_status_success); return *this; } inline SubgraphTester& Optimize() { const xnn_status status = xnn_subgraph_optimize(subgraph_.get(), 0 /* flags */); EXPECT_EQ(status, xnn_status_success); return *this; } inline SubgraphTester& RewriteForNchw() { xnn_subgraph_rewrite_for_nchw(subgraph_.get()); return *this; } inline SubgraphTester& RewriteForFp16() { EXPECT_TRUE(xnn_subgraph_rewrite_for_fp16(subgraph_.get())); return *this; } inline xnn_layout_type GetLayout(uint32_t value_id) const { return subgraph_->values[value_id].layout; } inline const xnn_value* const Value(uint32_t value_id) const { return &subgraph_->values[value_id]; } inline const xnn_node* const Node(uint32_t node_id) const { return &subgraph_->nodes[node_id]; } inline size_t NumNodes() const { return subgraph_->num_nodes; } protected: std::unique_ptr subgraph_{nullptr, xnn_delete_subgraph}; std::unordered_map> external_tensors_; uint32_t output_id_; private: static inline size_t NumElements(const std::vector& dims) { return std::accumulate(std::begin(dims), std::end(dims), size_t(1), std::multiplies()); } std::vector> static_data_; std::mt19937 rng_; std::uniform_real_distribution f32dist = std::uniform_real_distribution(-1.0f, +1.0f); }; } // namespace xnnpack