// Copyright 2022 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include // For std::generate, std::min. #include // For std::array. #include // For std::lrintf. #include // For size_t. #include // For uint32_t. #include // For std::numeric_limits. #include // For std::unique_ptr. #include // For std::random_device, std::mt19937, std::uniform_real_distribution. #include // For std::vector. #include #include #include #include #include template class MaxPooling2DTestBase : public ::testing::Test { protected: MaxPooling2DTestBase() { random_device = std::unique_ptr(new std::random_device()); rng = std::mt19937((*random_device)()); input_size_dist = std::uniform_int_distribution(10, 15); kernel_size_dist = std::uniform_int_distribution(2, 5); f32dist = std::uniform_real_distribution(); scale_dist = std::uniform_real_distribution(1.0f, 5.0f); i32dist = std::uniform_int_distribution(-10000, 10000); dilation_dist = std::uniform_int_distribution(1, 2); i8dist = std::uniform_int_distribution(std::numeric_limits::min(), std::numeric_limits::max()); u8dist = std::uniform_int_distribution(std::numeric_limits::min(), std::numeric_limits::max()); batch_size = input_size_dist(rng); input_height = input_size_dist(rng); input_width = input_size_dist(rng); channels = input_size_dist(rng); pooling_height = kernel_size_dist(rng); pooling_width = kernel_size_dist(rng); padding_top = std::uniform_int_distribution(0, pooling_height - 1)(rng); padding_bottom = std::uniform_int_distribution(0, pooling_height - 1)(rng); padding_left = std::uniform_int_distribution(0, pooling_width - 1)(rng); padding_right = std::uniform_int_distribution(0, pooling_width - 1)(rng); dilation_height = dilation_dist(rng); dilation_width = dilation_height; // stride dimension must be <= filter dimension stride_height = std::uniform_int_distribution(1, pooling_height)(rng); stride_width = std::uniform_int_distribution(1, pooling_width)(rng); output_min = -std::numeric_limits::infinity(); output_max = std::numeric_limits::infinity(); output_height = xnn_compute_convolution_output_dimension( padding_top + input_height + padding_bottom, pooling_height, dilation_height, stride_height); output_width = xnn_compute_convolution_output_dimension( padding_left + input_width + padding_right, pooling_width, dilation_width, stride_width); input_dims = {{batch_size, input_height, input_width, channels}}; output_dims = {{batch_size, output_height, output_width, channels}}; input = std::vector(XNN_EXTRA_BYTES / sizeof(T) + batch_size * input_height * input_width * channels); operator_output = std::vector(XNN_EXTRA_BYTES / sizeof(T) + batch_size * output_height * output_width * channels); subgraph_output = std::vector(XNN_EXTRA_BYTES / sizeof(T) + batch_size * output_height * output_width * channels); } std::unique_ptr random_device; std::mt19937 rng; std::uniform_int_distribution input_size_dist; std::uniform_int_distribution kernel_size_dist; std::uniform_int_distribution i32dist; std::uniform_real_distribution f32dist; std::uniform_real_distribution scale_dist; std::uniform_int_distribution dilation_dist; std::uniform_int_distribution i8dist; std::uniform_int_distribution u8dist; uint32_t padding_top; uint32_t padding_right; uint32_t padding_bottom; uint32_t padding_left; uint32_t batch_size; uint32_t input_height; uint32_t input_width; uint32_t pooling_height; uint32_t pooling_width; uint32_t stride_height; uint32_t stride_width; uint32_t dilation_height; uint32_t dilation_width; uint32_t channels; float output_min; float output_max; uint32_t output_height; uint32_t output_width; std::array input_dims; std::array output_dims; std::vector input; std::vector operator_output; std::vector subgraph_output; }; using MaxPooling2DTestQS8 = MaxPooling2DTestBase; using MaxPooling2DTestQU8 = MaxPooling2DTestBase; using MaxPooling2DTestF32 = MaxPooling2DTestBase; TEST_F(MaxPooling2DTestQS8, define) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, 0, 1.0f, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, /*flags=*/0, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, 0, 1.0f, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/1, /*flags=*/0, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_max_pooling_2d( subgraph, padding_top, padding_right, padding_bottom, padding_left, pooling_height, pooling_width, stride_height, stride_width, dilation_height, dilation_width, output_min, output_max, input_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_max_pooling_2d); ASSERT_EQ(node->compute_type, xnn_compute_type_qs8); ASSERT_EQ(node->params.pooling_2d.padding_top, padding_top); ASSERT_EQ(node->params.pooling_2d.padding_right, padding_right); ASSERT_EQ(node->params.pooling_2d.padding_bottom, padding_bottom); ASSERT_EQ(node->params.pooling_2d.padding_left, padding_left); ASSERT_EQ(node->params.pooling_2d.pooling_height, pooling_height); ASSERT_EQ(node->params.pooling_2d.pooling_width, pooling_width); ASSERT_EQ(node->params.pooling_2d.stride_height, stride_height); ASSERT_EQ(node->params.pooling_2d.stride_width, stride_width); ASSERT_EQ(node->params.pooling_2d.dilation_height, dilation_height); ASSERT_EQ(node->params.pooling_2d.dilation_width, dilation_width); ASSERT_EQ(node->activation.output_min, output_min); ASSERT_EQ(node->activation.output_max, output_max); ASSERT_EQ(node->num_inputs, 1); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); } TEST_F(MaxPooling2DTestQU8, define) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, 0, 1.0f, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, /*flags=*/0, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, 0, 1.0f, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/1, /*flags=*/0, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_max_pooling_2d( subgraph, padding_top, padding_right, padding_bottom, padding_left, pooling_height, pooling_width, stride_height, stride_width, dilation_height, dilation_width, output_min, output_max, input_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_max_pooling_2d); ASSERT_EQ(node->compute_type, xnn_compute_type_qu8); ASSERT_EQ(node->params.pooling_2d.padding_top, padding_top); ASSERT_EQ(node->params.pooling_2d.padding_right, padding_right); ASSERT_EQ(node->params.pooling_2d.padding_bottom, padding_bottom); ASSERT_EQ(node->params.pooling_2d.padding_left, padding_left); ASSERT_EQ(node->params.pooling_2d.pooling_height, pooling_height); ASSERT_EQ(node->params.pooling_2d.pooling_width, pooling_width); ASSERT_EQ(node->params.pooling_2d.stride_height, stride_height); ASSERT_EQ(node->params.pooling_2d.stride_width, stride_width); ASSERT_EQ(node->params.pooling_2d.dilation_height, dilation_height); ASSERT_EQ(node->params.pooling_2d.dilation_width, dilation_width); ASSERT_EQ(node->activation.output_min, output_min); ASSERT_EQ(node->activation.output_max, output_max); ASSERT_EQ(node->num_inputs, 1); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); } TEST_F(MaxPooling2DTestF32, define) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, /*flags=*/0, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/1, /*flags=*/0, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_max_pooling_2d( subgraph, padding_top, padding_right, padding_bottom, padding_left, pooling_height, pooling_width, stride_height, stride_width, dilation_height, dilation_width, output_min, output_max, input_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_max_pooling_2d); ASSERT_EQ(node->compute_type, xnn_compute_type_fp32); ASSERT_EQ(node->params.pooling_2d.padding_top, padding_top); ASSERT_EQ(node->params.pooling_2d.padding_right, padding_right); ASSERT_EQ(node->params.pooling_2d.padding_bottom, padding_bottom); ASSERT_EQ(node->params.pooling_2d.padding_left, padding_left); ASSERT_EQ(node->params.pooling_2d.pooling_height, pooling_height); ASSERT_EQ(node->params.pooling_2d.pooling_width, pooling_width); ASSERT_EQ(node->params.pooling_2d.stride_height, stride_height); ASSERT_EQ(node->params.pooling_2d.stride_width, stride_width); ASSERT_EQ(node->params.pooling_2d.dilation_height, dilation_height); ASSERT_EQ(node->params.pooling_2d.dilation_width, dilation_width); ASSERT_EQ(node->activation.output_min, output_min); ASSERT_EQ(node->activation.output_max, output_max); ASSERT_EQ(node->num_inputs, 1); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); } TEST_F(MaxPooling2DTestQS8, matches_operator_api) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); }); std::fill(operator_output.begin(), operator_output.end(), INT8_C(0xA5)); std::fill(subgraph_output.begin(), subgraph_output.end(), INT8_C(0xA5)); const int8_t input_zero_point = i8dist(rng); const float input_scale = scale_dist(rng); const int8_t output_zero_point = input_zero_point; const float output_scale = input_scale; const int8_t quantized_output_min = xnn_qs8_quantize(output_min, output_scale, output_zero_point); const int8_t quantized_output_max = xnn_qs8_quantize(output_max, output_scale, output_zero_point); // Call operator API. xnn_operator_t op = nullptr; const xnn_status status = xnn_create_max_pooling2d_nhwc_s8( padding_top, padding_right, padding_bottom, padding_left, pooling_height, pooling_width, stride_height, stride_width, dilation_height, dilation_width, channels, channels, channels, quantized_output_min, quantized_output_max, /*flags=*/0, &op); std::unique_ptr auto_op(op, xnn_delete_operator); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); ASSERT_EQ( xnn_status_success, xnn_setup_max_pooling2d_nhwc_s8( op, batch_size, input_height, input_width, input.data(), operator_output.data(), /*threadpool=*/nullptr)); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, input_zero_point, input_scale, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, output_zero_point, output_scale, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/1, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_max_pooling_2d( subgraph, padding_top, padding_right, padding_bottom, padding_left, pooling_height, pooling_width, stride_height, stride_width, dilation_height, dilation_width, output_min, output_max, input_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); for (size_t i = 0; i < batch_size * output_height * output_width * channels; i++) { ASSERT_EQ(subgraph_output[i], operator_output[i]); } } TEST_F(MaxPooling2DTestQU8, matches_operator_api) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); }); std::fill(operator_output.begin(), operator_output.end(), UINT8_C(0xA5)); std::fill(subgraph_output.begin(), subgraph_output.end(), UINT8_C(0xA5)); const uint8_t input_zero_point = u8dist(rng); const float input_scale = scale_dist(rng); const uint8_t output_zero_point = input_zero_point; const float output_scale = input_scale; const uint8_t quantized_output_min = xnn_qu8_quantize(output_min, output_scale, output_zero_point); const uint8_t quantized_output_max = xnn_qu8_quantize(output_max, output_scale, output_zero_point); // Call operator API. xnn_operator_t op = nullptr; const xnn_status status = xnn_create_max_pooling2d_nhwc_u8( padding_top, padding_right, padding_bottom, padding_left, pooling_height, pooling_width, stride_height, stride_width, dilation_height, dilation_width, channels, channels, channels, quantized_output_min, quantized_output_max, /*flags=*/0, &op); std::unique_ptr auto_op(op, xnn_delete_operator); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); ASSERT_EQ( xnn_status_success, xnn_setup_max_pooling2d_nhwc_u8( op, batch_size, input_height, input_width, input.data(), operator_output.data(), /*threadpool=*/nullptr)); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, input_zero_point, input_scale, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, output_zero_point, output_scale, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/1, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_max_pooling_2d( subgraph, padding_top, padding_right, padding_bottom, padding_left, pooling_height, pooling_width, stride_height, stride_width, dilation_height, dilation_width, output_min, output_max, input_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); for (size_t i = 0; i < batch_size * output_height * output_width * channels; i++) { ASSERT_EQ(subgraph_output[i], operator_output[i]); } } TEST_F(MaxPooling2DTestF32, matches_operator_api) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); std::fill(operator_output.begin(), operator_output.end(), nanf("")); std::fill(subgraph_output.begin(), subgraph_output.end(), nanf("")); // Call operator API. xnn_operator_t op = nullptr; const xnn_status status = xnn_create_max_pooling2d_nhwc_f32( padding_top, padding_right, padding_bottom, padding_left, pooling_height, pooling_width, stride_height, stride_width, dilation_height, dilation_width, channels, channels, channels, output_min, output_max, /*flags=*/0, &op); std::unique_ptr auto_op(op, xnn_delete_operator); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); ASSERT_EQ( xnn_status_success, xnn_setup_max_pooling2d_nhwc_f32( op, batch_size, input_height, input_width, input.data(), operator_output.data(), /*threadpool=*/nullptr)); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(2, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/1, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_max_pooling_2d( subgraph, padding_top, padding_right, padding_bottom, padding_left, pooling_height, pooling_width, stride_height, stride_width, dilation_height, dilation_width, output_min, output_max, input_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); for (size_t i = 0; i < batch_size * output_height * output_width * channels; i++) { ASSERT_EQ(subgraph_output[i], operator_output[i]); } }