// Copyright (c) Facebook, Inc. and its affiliates. // All rights reserved. // // Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include #include #include #include #include #include #include #include class GlobalAveragePoolingOperatorTester { public: inline GlobalAveragePoolingOperatorTester& channels(size_t channels) { assert(channels != 0); this->channels_ = channels; return *this; } inline size_t channels() const { return this->channels_; } inline GlobalAveragePoolingOperatorTester& width(size_t width) { assert(width != 0); this->width_ = width; return *this; } inline size_t width() const { return this->width_; } inline GlobalAveragePoolingOperatorTester& input_stride(size_t input_stride) { assert(input_stride != 0); this->input_stride_ = input_stride; return *this; } inline size_t input_stride() const { if (this->input_stride_ == 0) { return channels(); } else { assert(this->input_stride_ >= channels()); return this->input_stride_; } } inline GlobalAveragePoolingOperatorTester& output_stride(size_t output_stride) { assert(output_stride != 0); this->output_stride_ = output_stride; return *this; } inline size_t output_stride() const { if (this->output_stride_ == 0) { return channels(); } else { assert(this->output_stride_ >= channels()); return this->output_stride_; } } inline GlobalAveragePoolingOperatorTester& batch_size(size_t batch_size) { assert(batch_size != 0); this->batch_size_ = batch_size; return *this; } inline size_t batch_size() const { return this->batch_size_; } inline GlobalAveragePoolingOperatorTester& input_scale(float input_scale) { assert(input_scale > 0.0f); assert(std::isnormal(input_scale)); this->input_scale_ = input_scale; return *this; } inline float input_scale() const { return this->input_scale_; } inline GlobalAveragePoolingOperatorTester& input_zero_point(uint8_t input_zero_point) { this->input_zero_point_ = input_zero_point; return *this; } inline uint8_t input_zero_point() const { return this->input_zero_point_; } inline GlobalAveragePoolingOperatorTester& output_scale(float output_scale) { assert(output_scale > 0.0f); assert(std::isnormal(output_scale)); this->output_scale_ = output_scale; return *this; } inline float output_scale() const { return this->output_scale_; } inline GlobalAveragePoolingOperatorTester& output_zero_point(uint8_t output_zero_point) { this->output_zero_point_ = output_zero_point; return *this; } inline uint8_t output_zero_point() const { return this->output_zero_point_; } inline GlobalAveragePoolingOperatorTester& qmin(uint8_t qmin) { this->qmin_ = qmin; return *this; } inline uint8_t qmin() const { return this->qmin_; } inline GlobalAveragePoolingOperatorTester& qmax(uint8_t qmax) { this->qmax_ = qmax; return *this; } inline uint8_t qmax() const { return this->qmax_; } inline GlobalAveragePoolingOperatorTester& iterations(size_t iterations) { this->iterations_ = iterations; return *this; } inline size_t iterations() const { return this->iterations_; } void TestNWCxQU8() const { std::random_device random_device; auto rng = std::mt19937(random_device()); std::uniform_int_distribution u8dist( std::numeric_limits::min(), std::numeric_limits::max()); std::vector input((batch_size() * width() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint8_t)); std::vector output(batch_size() * output_stride()); std::vector output_ref(batch_size() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); }); std::fill(output.begin(), output.end(), UINT8_C(0xA5)); // Compute reference results. const double scale = double(input_scale()) / (double(width()) * double(output_scale())); for (size_t i = 0; i < batch_size(); i++) { for (size_t j = 0; j < channels(); j++) { double acc = 0.0f; for (size_t k = 0; k < width(); k++) { acc += double(int32_t(input[(i * width() + k) * input_stride() + j]) - int32_t(input_zero_point())); } output_ref[i * channels() + j] = float(acc * scale + double(output_zero_point())); output_ref[i * channels() + j] = std::min(output_ref[i * channels() + j], float(qmax())); output_ref[i * channels() + j] = std::max(output_ref[i * channels() + j], float(qmin())); } } // Create, setup, run, and destroy Global Average Pooling operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t global_average_pooling_op = nullptr; xnn_status status = xnn_create_global_average_pooling_nwc_qu8( channels(), input_stride(), output_stride(), input_zero_point(), input_scale(), output_zero_point(), output_scale(), qmin(), qmax(), 0, &global_average_pooling_op); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, global_average_pooling_op); // Smart pointer to automatically delete global_average_pooling_op. std::unique_ptr auto_global_average_pooling_op(global_average_pooling_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_global_average_pooling_nwc_qu8( global_average_pooling_op, batch_size(), width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(global_average_pooling_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t c = 0; c < channels(); c++) { ASSERT_LE(uint32_t(output[i * output_stride() + c]), uint32_t(qmax())); ASSERT_GE(uint32_t(output[i * output_stride() + c]), uint32_t(qmin())); ASSERT_NEAR(float(int32_t(output[i * output_stride() + c])), output_ref[i * channels() + c], 0.80f) << "at batch index " << i << " / " << batch_size() << ", channel " << c << " / " << channels(); } } } } void TestNWCxQS8() const { std::random_device random_device; auto rng = std::mt19937(random_device()); std::uniform_int_distribution i8dist( std::numeric_limits::min(), std::numeric_limits::max()); std::vector input((batch_size() * width() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(int8_t)); std::vector output(batch_size() * output_stride()); std::vector output_ref(batch_size() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); }); std::fill(output.begin(), output.end(), INT8_C(0xA5)); // Compute reference results. const double scale = double(input_scale()) / (double(width()) * double(output_scale())); for (size_t i = 0; i < batch_size(); i++) { for (size_t j = 0; j < channels(); j++) { double acc = 0.0f; for (size_t k = 0; k < width(); k++) { acc += double(int32_t(input[(i * width() + k) * input_stride() + j]) - int32_t(input_zero_point() - 0x80)); } output_ref[i * channels() + j] = float(acc * scale + double(output_zero_point() - 0x80)); output_ref[i * channels() + j] = std::min(output_ref[i * channels() + j], float(qmax() - 0x80)); output_ref[i * channels() + j] = std::max(output_ref[i * channels() + j], float(qmin() - 0x80)); } } // Create, setup, run, and destroy Global Average Pooling operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t global_average_pooling_op = nullptr; xnn_status status = xnn_create_global_average_pooling_nwc_qs8( channels(), input_stride(), output_stride(), int8_t(input_zero_point() - 0x80), input_scale(), int8_t(output_zero_point() - 0x80), output_scale(), int8_t(qmin() - 0x80), int8_t(qmax() - 0x80), 0, &global_average_pooling_op); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, global_average_pooling_op); // Smart pointer to automatically delete global_average_pooling_op. std::unique_ptr auto_global_average_pooling_op(global_average_pooling_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_global_average_pooling_nwc_qs8( global_average_pooling_op, batch_size(), width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(global_average_pooling_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t c = 0; c < channels(); c++) { ASSERT_LE(int32_t(output[i * output_stride() + c]), int32_t(qmax() - 0x80)); ASSERT_GE(int32_t(output[i * output_stride() + c]), int32_t(qmin() - 0x80)); ASSERT_NEAR(float(int32_t(output[i * output_stride() + c])), output_ref[i * channels() + c], 0.80f) << "at batch index " << i << " / " << batch_size() << ", channel " << c << " / " << channels(); } } } } void TestNWCxF16() const { std::random_device random_device; auto rng = std::mt19937(random_device()); std::uniform_real_distribution f32dist(1.0e-3f, 1.0f); std::vector input((batch_size() * width() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint16_t)); std::vector output(batch_size() * output_stride()); std::vector output_ref(batch_size() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), [&]() { return fp16_ieee_from_fp32_value(f32dist(rng)); }); std::fill(output.begin(), output.end(), UINT16_C(0x7E00) /* NaN */); // Compute reference results, without clamping. for (size_t i = 0; i < batch_size(); i++) { for (size_t j = 0; j < channels(); j++) { float acc = 0.0f; for (size_t k = 0; k < width(); k++) { acc += fp16_ieee_to_fp32_value(input[(i * width() + k) * input_stride() + j]); } output_ref[i * channels() + j] = acc / float(width()); } } // Compute clamping parameters. const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_range = accumulated_max - accumulated_min; const float scaled_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + accumulated_range / 255.0f * float(qmin()))); const float scaled_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - accumulated_range / 255.0f * float(255 - qmax()))); const float output_min = scaled_min == scaled_max ? -std::numeric_limits::infinity() : scaled_min; const float output_max = scaled_min == scaled_max ? +std::numeric_limits::infinity() : scaled_max; // Clamp reference results. for (float& value : output_ref) { value = std::max(std::min(value, output_max), output_min); } // Create, setup, run, and destroy Global Average Pooling operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t global_average_pooling_op = nullptr; xnn_status status = xnn_create_global_average_pooling_nwc_f16( channels(), input_stride(), output_stride(), output_min, output_max, 0, &global_average_pooling_op); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, global_average_pooling_op); // Smart pointer to automatically delete global_average_pooling_op. std::unique_ptr auto_global_average_pooling_op(global_average_pooling_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_global_average_pooling_nwc_f16( global_average_pooling_op, batch_size(), width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(global_average_pooling_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t c = 0; c < channels(); c++) { ASSERT_LE(fp16_ieee_to_fp32_value(output[i * output_stride() + c]), output_max); ASSERT_GE(fp16_ieee_to_fp32_value(output[i * output_stride() + c]), output_min); ASSERT_NEAR(fp16_ieee_to_fp32_value(output[i * output_stride() + c]), output_ref[i * channels() + c], std::max(1.0e-4f, std::abs(output_ref[i * channels() + c]) * 1.0e-2f)) << "at batch index " << i << " / " << batch_size() << ", channel " << c << " / " << channels(); } } } } void TestNWCxF32() const { std::random_device random_device; auto rng = std::mt19937(random_device()); std::uniform_real_distribution f32dist; std::vector input((batch_size() * width() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float)); std::vector output(batch_size() * output_stride()); std::vector output_ref(batch_size() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); std::fill(output.begin(), output.end(), std::nanf("")); // Compute reference results, without clamping. for (size_t i = 0; i < batch_size(); i++) { for (size_t j = 0; j < channels(); j++) { float acc = 0.0f; for (size_t k = 0; k < width(); k++) { acc += input[(i * width() + k) * input_stride() + j]; } output_ref[i * channels() + j] = acc / float(width()); } } // Compute clamping parameters. const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_range = accumulated_max - accumulated_min; const float output_min = accumulated_range == 0.0f ? -std::numeric_limits::infinity() : accumulated_min + accumulated_range / 255.0f * float(qmin()); const float output_max = accumulated_range == 0.0f ? +std::numeric_limits::infinity() : accumulated_max - accumulated_range / 255.0f * float(255 - qmax()); // Clamp reference results. for (float& value : output_ref) { value = std::max(std::min(value, output_max), output_min); } // Create, setup, run, and destroy Global Average Pooling operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t global_average_pooling_op = nullptr; xnn_status status = xnn_create_global_average_pooling_nwc_f32( channels(), input_stride(), output_stride(), output_min, output_max, 0, &global_average_pooling_op); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, global_average_pooling_op); // Smart pointer to automatically delete global_average_pooling_op. std::unique_ptr auto_global_average_pooling_op(global_average_pooling_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_global_average_pooling_nwc_f32( global_average_pooling_op, batch_size(), width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(global_average_pooling_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t c = 0; c < channels(); c++) { ASSERT_LE(output[i * output_stride() + c], output_max); ASSERT_GE(output[i * output_stride() + c], output_min); ASSERT_NEAR(output[i * output_stride() + c], output_ref[i * channels() + c], std::abs(output_ref[i * channels() + c]) * 1.0e-6f) << "at batch index " << i << " / " << batch_size() << ", channel " << c << " / " << channels(); } } } } void TestNCWxF32() const { std::random_device random_device; auto rng = std::mt19937(random_device()); std::uniform_real_distribution f32dist; std::vector input(batch_size() * channels() * width() + XNN_EXTRA_BYTES / sizeof(float)); std::vector output(batch_size() * channels()); std::vector output_ref(batch_size() * channels()); for (size_t iteration = 0; iteration < iterations(); iteration++) { std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); std::fill(output.begin(), output.end(), std::nanf("")); // Compute reference results, without clamping. for (size_t i = 0; i < batch_size(); i++) { for (size_t j = 0; j < channels(); j++) { float acc = 0.0f; for (size_t k = 0; k < width(); k++) { acc += input[(i * channels() + j) * width() + k]; } output_ref[i * channels() + j] = acc / float(width()); } } // Compute clamping parameters. const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend()); const float accumulated_range = accumulated_max - accumulated_min; const float output_min = accumulated_range == 0.0f ? -std::numeric_limits::infinity() : accumulated_min + accumulated_range / 255.0f * float(qmin()); const float output_max = accumulated_range == 0.0f ? +std::numeric_limits::infinity() : accumulated_max - accumulated_range / 255.0f * float(255 - qmax()); // Clamp reference results. for (float& value : output_ref) { value = std::max(std::min(value, output_max), output_min); } // Create, setup, run, and destroy Global Average Pooling operator. ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */)); xnn_operator_t global_average_pooling_op = nullptr; xnn_status status = xnn_create_global_average_pooling_ncw_f32( channels(), output_min, output_max, 0, &global_average_pooling_op); if (status == xnn_status_unsupported_parameter) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); // Smart pointer to automatically delete global_average_pooling_op. std::unique_ptr auto_global_average_pooling_op(global_average_pooling_op, xnn_delete_operator); ASSERT_EQ(xnn_status_success, xnn_setup_global_average_pooling_ncw_f32( global_average_pooling_op, batch_size(), width(), input.data(), output.data(), nullptr /* thread pool */)); ASSERT_EQ(xnn_status_success, xnn_run_operator(global_average_pooling_op, nullptr /* thread pool */)); // Verify results. for (size_t i = 0; i < batch_size(); i++) { for (size_t c = 0; c < channels(); c++) { ASSERT_LE(output[i * channels() + c], output_max); ASSERT_GE(output[i * channels() + c], output_min); ASSERT_NEAR(output[i * channels() + c], output_ref[i * channels() + c], std::abs(output_ref[i * channels() + c]) * 1.0e-5f) << "at batch index " << i << " / " << batch_size() << ", channel " << c << " / " << channels(); } } } } private: size_t batch_size_{1}; size_t width_{1}; size_t channels_{1}; size_t input_stride_{0}; size_t output_stride_{0}; float input_scale_{1.0f}; float output_scale_{1.0f}; uint8_t input_zero_point_{121}; uint8_t output_zero_point_{133}; uint8_t qmin_{0}; uint8_t qmax_{255}; size_t iterations_{1}; };