// Copyright 2022 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include #include #include #include #include #include #include "convolution-test-helpers.h" #include namespace xnnpack { template class DepthwiseConvolutionTestBase : public ::testing::Test { protected: DepthwiseConvolutionTestBase() { random_device = std::unique_ptr(new std::random_device()); rng = std::mt19937((*random_device)()); input_size_dist = std::uniform_int_distribution(10, 15); kernel_size_dist = std::uniform_int_distribution(1, 5); stride_dist = std::uniform_int_distribution(1, 2); f32dist = std::uniform_real_distribution(0.1f, 1.0f); i32dist = std::uniform_int_distribution(-10000, 10000); batch_size = input_size_dist(rng); input_height = input_size_dist(rng); input_width = input_size_dist(rng); input_channels = input_size_dist(rng); kernel_height = kernel_size_dist(rng); kernel_width = kernel_size_dist(rng); subsampling_height = stride_dist(rng); subsampling_width = stride_dist(rng); depth_multiplier = kernel_size_dist(rng); dilation_height = stride_dist(rng); dilation_width = stride_dist(rng); input_padding_top = kernel_size_dist(rng); input_padding_right = kernel_size_dist(rng); input_padding_bottom = kernel_size_dist(rng); input_padding_left = kernel_size_dist(rng); output_height = xnn_compute_convolution_output_dimension( input_padding_top + input_height + input_padding_bottom, kernel_height, dilation_height, subsampling_height); output_width = xnn_compute_convolution_output_dimension( input_padding_left + input_width + input_padding_right, kernel_width, dilation_width, subsampling_width); output_channels = input_channels * depth_multiplier; output_min = -std::numeric_limits::infinity(); output_max = std::numeric_limits::infinity(); input_dims = {{batch_size, input_height, input_width, input_channels}}; filter_dims = {{1, kernel_height, kernel_width, output_channels}}; bias_dims = {{output_channels}}; output_dims = {{batch_size, output_height, output_width, output_channels}}; input = std::vector(XNN_EXTRA_BYTES / sizeof(T) + batch_size * input_height * input_width * input_channels); filter = std::vector(batch_size * kernel_height * kernel_width * output_channels); bias = std::vector(output_channels); operator_output = std::vector(batch_size * output_height * output_width * output_channels); subgraph_output = std::vector(batch_size * output_height * output_width * output_channels); } std::unique_ptr random_device; std::mt19937 rng; std::uniform_int_distribution input_size_dist; std::uniform_int_distribution kernel_size_dist; std::uniform_int_distribution stride_dist; std::uniform_int_distribution i32dist; std::uniform_real_distribution f32dist; uint32_t input_padding_top; uint32_t input_padding_right; uint32_t input_padding_bottom; uint32_t input_padding_left; uint32_t batch_size; uint32_t input_height; uint32_t input_width; uint32_t kernel_height; uint32_t kernel_width; uint32_t subsampling_height; uint32_t subsampling_width; uint32_t dilation_height; uint32_t dilation_width; uint32_t depth_multiplier; uint32_t input_channels; uint32_t output_channels; float output_min; float output_max; uint32_t output_height; uint32_t output_width; std::array input_dims; std::array filter_dims; std::array bias_dims; std::array output_dims; std::vector input; std::vector filter; std::vector bias; std::vector operator_output; std::vector subgraph_output; }; template class QuantizedDepthwiseConvolutionTestBase : public DepthwiseConvolutionTestBase { protected: QuantizedDepthwiseConvolutionTestBase() { i8dist = std::uniform_int_distribution(std::numeric_limits::min(), std::numeric_limits::max()); w8dist = std::uniform_int_distribution(-std::numeric_limits::max(), std::numeric_limits::max()); u8dist = std::uniform_int_distribution(std::numeric_limits::min(), std::numeric_limits::max()); accumulators = std::vector( this->batch_size * this->output_height * this->output_width * this->input_channels * this->depth_multiplier); scale_dist = std::uniform_real_distribution(1.0f, 5.0f); input_scale = scale_dist(this->rng); kernel_scale = scale_dist(this->rng); if (std::is_same::value) { input_zero_point = i8dist(this->rng); kernel_zero_point = i8dist(this->rng); } else { input_zero_point = u8dist(this->rng); kernel_zero_point = 0; } } std::uniform_int_distribution i8dist; std::uniform_int_distribution u8dist; std::uniform_int_distribution w8dist; std::uniform_real_distribution scale_dist; std::vector accumulators; float input_scale; float kernel_scale; float output_scale = 1.0f; typedef typename std::conditional::value, uint8_t, int8_t>::type ZeroPointType; ZeroPointType input_zero_point; ZeroPointType kernel_zero_point; ZeroPointType output_zero_point = 0; }; using DepthwiseConvolutionTestQC8 = QuantizedDepthwiseConvolutionTestBase; using DepthwiseConvolutionTestQS8 = QuantizedDepthwiseConvolutionTestBase; using DepthwiseConvolutionTestQU8 = QuantizedDepthwiseConvolutionTestBase; using DepthwiseConvolutionTestF32 = DepthwiseConvolutionTestBase; TEST_F(DepthwiseConvolutionTestQC8, define) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); std::vector requantization_scales(input_channels * depth_multiplier, 1.0f); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, input_zero_point, input_scale, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t filter_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_channelwise_quantized_tensor_value( subgraph, xnn_datatype_qcint8, requantization_scales.data(), filter_dims.size(), 3, filter_dims.data(), filter.data(), /*external_id=*/1, /*flags=*/0, &filter_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_channelwise_quantized_tensor_value( subgraph, xnn_datatype_qcint32, requantization_scales.data(), bias_dims.size(), 0, bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, output_zero_point, output_scale, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_depthwise_convolution_2d( subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, depth_multiplier, input_channels, output_min, output_max, input_id, filter_id, bias_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_depthwise_convolution_2d); ASSERT_EQ(node->compute_type, xnn_compute_type_qc8); ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_top, input_padding_top); ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_right, input_padding_right); ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_bottom, input_padding_bottom); ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_left, input_padding_left); ASSERT_EQ(node->params.depthwise_convolution_2d.kernel_height, kernel_height); ASSERT_EQ(node->params.depthwise_convolution_2d.kernel_width, kernel_width); ASSERT_EQ(node->params.depthwise_convolution_2d.subsampling_height, subsampling_height); ASSERT_EQ(node->params.depthwise_convolution_2d.subsampling_width, subsampling_width); ASSERT_EQ(node->params.depthwise_convolution_2d.dilation_height, dilation_height); ASSERT_EQ(node->params.depthwise_convolution_2d.dilation_width, dilation_width); ASSERT_EQ(node->params.depthwise_convolution_2d.depth_multiplier, depth_multiplier); ASSERT_EQ(node->params.depthwise_convolution_2d.input_channels, input_channels); ASSERT_EQ(node->activation.output_min, output_min); ASSERT_EQ(node->activation.output_max, output_max); ASSERT_EQ(node->num_inputs, 3); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->inputs[1], filter_id); ASSERT_EQ(node->inputs[2], bias_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); } TEST_F(DepthwiseConvolutionTestQS8, define) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, input_zero_point, input_scale, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t filter_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, 0, kernel_scale, filter_dims.size(), filter_dims.data(), filter.data(), /*external_id=*/1, /*flags=*/0, &filter_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint32, 0, kernel_scale, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, output_zero_point, output_scale, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_depthwise_convolution_2d( subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, depth_multiplier, input_channels, output_min, output_max, input_id, filter_id, bias_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_depthwise_convolution_2d); ASSERT_EQ(node->compute_type, xnn_compute_type_qs8); ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_top, input_padding_top); ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_right, input_padding_right); ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_bottom, input_padding_bottom); ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_left, input_padding_left); ASSERT_EQ(node->params.depthwise_convolution_2d.kernel_height, kernel_height); ASSERT_EQ(node->params.depthwise_convolution_2d.kernel_width, kernel_width); ASSERT_EQ(node->params.depthwise_convolution_2d.subsampling_height, subsampling_height); ASSERT_EQ(node->params.depthwise_convolution_2d.subsampling_width, subsampling_width); ASSERT_EQ(node->params.depthwise_convolution_2d.dilation_height, dilation_height); ASSERT_EQ(node->params.depthwise_convolution_2d.dilation_width, dilation_width); ASSERT_EQ(node->params.depthwise_convolution_2d.depth_multiplier, depth_multiplier); ASSERT_EQ(node->params.depthwise_convolution_2d.input_channels, input_channels); ASSERT_EQ(node->activation.output_min, output_min); ASSERT_EQ(node->activation.output_max, output_max); ASSERT_EQ(node->num_inputs, 3); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->inputs[1], filter_id); ASSERT_EQ(node->inputs[2], bias_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); } TEST_F(DepthwiseConvolutionTestQU8, define) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, input_zero_point, input_scale, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t filter_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, 0, kernel_scale, filter_dims.size(), filter_dims.data(), filter.data(), /*external_id=*/1, /*flags=*/0, &filter_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint32, 0, kernel_scale, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, output_zero_point, output_scale, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_depthwise_convolution_2d( subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, depth_multiplier, input_channels, output_min, output_max, input_id, filter_id, bias_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_depthwise_convolution_2d); ASSERT_EQ(node->compute_type, xnn_compute_type_qu8); ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_top, input_padding_top); ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_right, input_padding_right); ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_bottom, input_padding_bottom); ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_left, input_padding_left); ASSERT_EQ(node->params.depthwise_convolution_2d.kernel_height, kernel_height); ASSERT_EQ(node->params.depthwise_convolution_2d.kernel_width, kernel_width); ASSERT_EQ(node->params.depthwise_convolution_2d.subsampling_height, subsampling_height); ASSERT_EQ(node->params.depthwise_convolution_2d.subsampling_width, subsampling_width); ASSERT_EQ(node->params.depthwise_convolution_2d.dilation_height, dilation_height); ASSERT_EQ(node->params.depthwise_convolution_2d.dilation_width, dilation_width); ASSERT_EQ(node->params.depthwise_convolution_2d.depth_multiplier, depth_multiplier); ASSERT_EQ(node->params.depthwise_convolution_2d.input_channels, input_channels); ASSERT_EQ(node->activation.output_min, output_min); ASSERT_EQ(node->activation.output_max, output_max); ASSERT_EQ(node->num_inputs, 3); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->inputs[1], filter_id); ASSERT_EQ(node->inputs[2], bias_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); } TEST_F(DepthwiseConvolutionTestF32, define) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t filter_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, filter_dims.size(), filter_dims.data(), filter.data(), /*external_id=*/1, /*flags=*/0, &filter_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_depthwise_convolution_2d( subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, depth_multiplier, input_channels, output_min, output_max, input_id, filter_id, bias_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_depthwise_convolution_2d); ASSERT_EQ(node->compute_type, xnn_compute_type_fp32); ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_top, input_padding_top); ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_right, input_padding_right); ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_bottom, input_padding_bottom); ASSERT_EQ(node->params.depthwise_convolution_2d.input_padding_left, input_padding_left); ASSERT_EQ(node->params.depthwise_convolution_2d.kernel_height, kernel_height); ASSERT_EQ(node->params.depthwise_convolution_2d.kernel_width, kernel_width); ASSERT_EQ(node->params.depthwise_convolution_2d.subsampling_height, subsampling_height); ASSERT_EQ(node->params.depthwise_convolution_2d.subsampling_width, subsampling_width); ASSERT_EQ(node->params.depthwise_convolution_2d.dilation_height, dilation_height); ASSERT_EQ(node->params.depthwise_convolution_2d.dilation_width, dilation_width); ASSERT_EQ(node->params.depthwise_convolution_2d.depth_multiplier, depth_multiplier); ASSERT_EQ(node->params.depthwise_convolution_2d.input_channels, input_channels); ASSERT_EQ(node->activation.output_min, output_min); ASSERT_EQ(node->activation.output_max, output_max); ASSERT_EQ(node->num_inputs, 3); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->inputs[1], filter_id); ASSERT_EQ(node->inputs[2], bias_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); } TEST_F(DepthwiseConvolutionTestQC8, matches_operator_api) { std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); }); std::generate(filter.begin(), filter.end(), [&]() { return w8dist(rng); }); std::generate(bias.begin(), bias.end(), [&]() { return i32dist(rng); }); std::fill(operator_output.begin(), operator_output.end(), INT8_C(0xA5)); std::fill(subgraph_output.begin(), subgraph_output.end(), INT8_C(0xA5)); std::vector requantization_scales(input_channels * depth_multiplier); const int8_t quantized_output_min = xnn_qs8_quantize(output_min, output_scale, output_zero_point); const int8_t quantized_output_max = xnn_qs8_quantize(output_max, output_scale, output_zero_point); // Compute reference results, without renormalization. compute_depthwise_convolution_qs8_reference_results( batch_size, output_height, output_width, input_height, input_width, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, input_channels, depth_multiplier, input_zero_point, input, filter, accumulators, /*has_bias=*/true, bias); // Compute renormalization parameters. for (size_t c = 0; c < input_channels * depth_multiplier; c++) { int32_t accumulated_min = accumulators[c]; int32_t accumulated_max = accumulators[c]; for (size_t px = 0; px < batch_size * output_height * output_width; px++) { accumulated_min = std::min(accumulated_min, accumulators[px * input_channels * depth_multiplier + c]); accumulated_max = std::max(accumulated_max, accumulators[px * input_channels * depth_multiplier + c]); } float requantization_scale = 0x1.0p-32f; if (accumulated_max != 0) { requantization_scale = std::max( requantization_scale, float(int32_t(std::numeric_limits::max()) - int32_t(output_zero_point)) / float(accumulated_max)); } if (accumulated_min != 0) { requantization_scale = std::max( requantization_scale, float(int32_t(std::numeric_limits::min()) - int32_t(output_zero_point)) / float(accumulated_min)); } requantization_scale = std::min(requantization_scale, 0x1.FFFFFEp-1f); requantization_scales[c] = requantization_scale; } ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_operator_t op = nullptr; // Call operator API. const xnn_status status = xnn_create_convolution2d_nhwc_qc8( input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, /*groups=*/input_channels, /*group_input_channels=*/1, /*group_output_channels=*/depth_multiplier, input_channels, input_channels * depth_multiplier, input_zero_point, input_scale, requantization_scales.data(), filter.data(), bias.data(), output_zero_point, output_scale, quantized_output_min, quantized_output_max, /*flags=*/XNN_FLAG_DEPTHWISE_CONVOLUTION, nullptr, &op); std::unique_ptr auto_op(op, xnn_delete_operator); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); ASSERT_EQ( xnn_status_success, xnn_setup_convolution2d_nhwc_qc8( op, batch_size, input_height, input_width, input.data(), operator_output.data(), /*threadpool=*/nullptr)); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, input_zero_point, input_scale, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t filter_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_channelwise_quantized_tensor_value( subgraph, xnn_datatype_qcint8, requantization_scales.data(), filter_dims.size(), 3, filter_dims.data(), filter.data(), /*external_id=*/1, /*flags=*/0, &filter_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_channelwise_quantized_tensor_value( subgraph, xnn_datatype_qcint32, requantization_scales.data(), bias_dims.size(), 0, bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, output_zero_point, output_scale, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_depthwise_convolution_2d( subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, depth_multiplier, input_channels, output_min, output_max, input_id, filter_id, bias_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); ASSERT_EQ(subgraph_output, operator_output); } TEST_F(DepthwiseConvolutionTestQS8, matches_operator_api) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_operator_t op = nullptr; std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); }); std::generate(filter.begin(), filter.end(), [&]() { return w8dist(rng); }); std::generate(bias.begin(), bias.end(), [&]() { return i32dist(rng); }); std::fill(operator_output.begin(), operator_output.end(), INT8_C(0xA5)); std::fill(subgraph_output.begin(), subgraph_output.end(), INT8_C(0xA5)); compute_convolution_qs8_reference_results( batch_size, output_height, output_width, input_height, input_width, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, /*groups=*/input_channels, /*group_input_channels=*/1, /*group_output_channels=*/depth_multiplier, input_zero_point, input, filter, accumulators, /*has_bias=*/true, bias); // Compute renormalization parameters. const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend()); const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend()); float output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0; int8_t output_zero_point = int8_t(std::max( std::min( lrint(-0.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale), long(std::numeric_limits::max())), long(std::numeric_limits::min()))); const int8_t quantized_output_min = xnn_qs8_quantize(output_min, output_scale, output_zero_point); const int8_t quantized_output_max = xnn_qs8_quantize(output_max, output_scale, output_zero_point); // Call operator API. const xnn_status status = xnn_create_convolution2d_nhwc_qs8( input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, /*groups=*/input_channels, /*group_input_channels=*/1, /*group_output_channels=*/depth_multiplier, input_channels, input_channels * depth_multiplier, input_zero_point, input_scale, kernel_scale, filter.data(), bias.data(), output_zero_point, output_scale, quantized_output_min, quantized_output_max, /*flags=*/XNN_FLAG_DEPTHWISE_CONVOLUTION, nullptr, &op); std::unique_ptr auto_op(op, xnn_delete_operator); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); ASSERT_EQ( xnn_status_success, xnn_setup_convolution2d_nhwc_qs8( op, batch_size, input_height, input_width, input.data(), operator_output.data(), /*threadpool=*/nullptr)); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, input_zero_point, input_scale, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t filter_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, kernel_zero_point, kernel_scale, filter_dims.size(), filter_dims.data(), filter.data(), /*external_id=*/1, /*flags=*/0, &filter_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint32, 0, kernel_scale, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, output_zero_point, output_scale, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_depthwise_convolution_2d( subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, depth_multiplier, input_channels, output_min, output_max, input_id, filter_id, bias_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); ASSERT_EQ(subgraph_output, operator_output); } TEST_F(DepthwiseConvolutionTestQU8, matches_operator_api) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_operator_t op = nullptr; std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); }); std::generate(filter.begin(), filter.end(), [&]() { return u8dist(rng); }); std::generate(bias.begin(), bias.end(), [&]() { return i32dist(rng); }); std::fill(operator_output.begin(), operator_output.end(), UINT8_C(0xA5)); std::fill(subgraph_output.begin(), subgraph_output.end(), UINT8_C(0xA5)); // Compute reference results, without renormalization. compute_convolution_qu8_reference_results( batch_size, output_height, output_width, input_height, input_width, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, /*groups=*/input_channels, /*group_input_channels=*/1, /*group_output_channels=*/depth_multiplier, input_zero_point, kernel_zero_point, input, filter, accumulators, /*has_bias=*/true, bias); // Compute renormalization parameters. const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend()); const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend()); const double output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0; const uint8_t output_zero_point = uint8_t(std::max( std::min( lrint(127.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale), long(std::numeric_limits::max())), long(std::numeric_limits::min()))); const uint8_t quantized_output_min = xnn_qu8_quantize(output_min, output_scale, output_zero_point); const uint8_t quantized_output_max = xnn_qu8_quantize(output_max, output_scale, output_zero_point); // Call operator API. const xnn_status status = xnn_create_convolution2d_nhwc_qu8( input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, /*groups=*/input_channels, /*group_input_channels=*/1, /*group_output_channels=*/depth_multiplier, input_channels, input_channels * depth_multiplier, input_zero_point, input_scale, kernel_zero_point, kernel_scale, filter.data(), bias.data(), output_zero_point, output_scale, quantized_output_min, quantized_output_max, /*flags=*/XNN_FLAG_DEPTHWISE_CONVOLUTION, nullptr, &op); std::unique_ptr auto_op(op, xnn_delete_operator); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); ASSERT_EQ( xnn_status_success, xnn_setup_convolution2d_nhwc_qu8( op, batch_size, input_height, input_width, input.data(), operator_output.data(), /*threadpool=*/nullptr)); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, input_zero_point, input_scale, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t filter_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, 0, kernel_scale, filter_dims.size(), filter_dims.data(), filter.data(), /*external_id=*/1, /*flags=*/0, &filter_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint32, 0, kernel_scale, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, output_zero_point, output_scale, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_depthwise_convolution_2d( subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, depth_multiplier, input_channels, output_min, output_max, input_id, filter_id, bias_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); ASSERT_EQ(subgraph_output, operator_output); } TEST_F(DepthwiseConvolutionTestF32, matches_operator_api) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_operator_t op = nullptr; std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); std::generate(filter.begin(), filter.end(), [&]() { return f32dist(rng); }); std::generate(bias.begin(), bias.end(), [&]() { return f32dist(rng); }); std::fill(operator_output.begin(), operator_output.end(), nanf("")); std::fill(subgraph_output.begin(), subgraph_output.end(), nanf("")); // Call operator API. const xnn_status status = xnn_create_convolution2d_nhwc_f32( input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, /*groups=*/input_channels, /*group_input_channels=*/1, /*group_output_channels=*/depth_multiplier, input_channels, input_channels * depth_multiplier, filter.data(), bias.data(), output_min, output_max, /*flags=*/XNN_FLAG_DEPTHWISE_CONVOLUTION, nullptr, &op); std::unique_ptr auto_op(op, xnn_delete_operator); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); ASSERT_EQ( xnn_status_success, xnn_setup_convolution2d_nhwc_f32( op, batch_size, input_height, input_width, input.data(), operator_output.data(), /*threadpool=*/nullptr)); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t filter_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, filter_dims.size(), filter_dims.data(), filter.data(), /*external_id=*/1, /*flags=*/0, &filter_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_depthwise_convolution_2d( subgraph, input_padding_top, input_padding_right, input_padding_bottom, input_padding_left, kernel_height, kernel_width, subsampling_height, subsampling_width, dilation_height, dilation_width, depth_multiplier, input_channels, output_min, output_max, input_id, filter_id, bias_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); ASSERT_EQ(subgraph_output, operator_output); } } // namespace xnnpack