// Copyright 2022 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include // For std::generate, std::min. #include // For std::array. #include // For std::lrintf. #include // For size_t. #include // For uint32_t. #include // For std::numeric_limits. #include // For std::unique_ptr. #include // For std::random_device, std::mt19937, std::uniform_real_distribution. #include // For std::vector. #include #include #include #include #include template class DeconvolutionTestBase : public ::testing::Test { protected: DeconvolutionTestBase() { random_device = std::unique_ptr(new std::random_device()); rng = std::mt19937((*random_device)()); input_size_dist = std::uniform_int_distribution(10, 15); kernel_size_dist = std::uniform_int_distribution(1, 5); stride_dist = std::uniform_int_distribution(1, 3); f32dist = std::uniform_real_distribution(0.1f, 1.0f); scale_dist = std::uniform_real_distribution(1.0f, 5.0f); i32dist = std::uniform_int_distribution(-10000, 10000); batch_size = input_size_dist(rng); input_height = input_size_dist(rng); input_width = input_size_dist(rng); kernel_height = kernel_size_dist(rng); kernel_width = kernel_size_dist(rng); upsampling_height = stride_dist(rng); upsampling_width = stride_dist(rng); dilation_height = stride_dist(rng); dilation_width = stride_dist(rng); groups = input_size_dist(rng); group_input_channels = input_size_dist(rng); group_output_channels = input_size_dist(rng); output_min = -std::numeric_limits::infinity(); output_max = std::numeric_limits::infinity(); adjustment_height = 0; adjustment_width = 0; output_height = xnn_compute_deconvolution_output_dimension( input_height, padding_top + padding_bottom, adjustment_height, kernel_height, dilation_height, upsampling_height); output_width = xnn_compute_deconvolution_output_dimension( input_width, padding_left + padding_right, adjustment_width, kernel_width, dilation_width, upsampling_width); input_dims = {{batch_size, input_height, input_width, group_input_channels}}; kernel_dims = {{groups * group_output_channels, kernel_height, kernel_width, group_input_channels}}; bias_dims = {{groups * group_output_channels}}; output_dims = {{batch_size, output_height, output_width, groups * group_output_channels}}; input = std::vector( XNN_EXTRA_BYTES / sizeof(T) + batch_size * input_height * input_width * groups * group_input_channels); kernel = std::vector(groups * group_output_channels * kernel_height * kernel_width * group_input_channels); bias = std::vector(groups * group_output_channels); operator_output = std::vector(batch_size * output_height * output_width * groups * group_output_channels); subgraph_output = std::vector(batch_size * output_height * output_width * groups * group_output_channels); } std::unique_ptr random_device; std::mt19937 rng; std::uniform_int_distribution input_size_dist; std::uniform_int_distribution kernel_size_dist; std::uniform_int_distribution stride_dist; std::uniform_int_distribution i32dist; std::uniform_real_distribution f32dist; std::uniform_real_distribution scale_dist; const uint32_t padding_top = 0; const uint32_t padding_right = 0; const uint32_t padding_bottom = 0; const uint32_t padding_left = 0; uint32_t batch_size; uint32_t input_height; uint32_t input_width; uint32_t kernel_height; uint32_t kernel_width; uint32_t upsampling_height; uint32_t upsampling_width; uint32_t adjustment_height; uint32_t adjustment_width; uint32_t dilation_height; uint32_t dilation_width; uint32_t groups; uint32_t group_input_channels; uint32_t group_output_channels; float output_min; float output_max; uint32_t output_height; uint32_t output_width; std::array input_dims; std::array kernel_dims; std::array bias_dims; std::array output_dims; std::vector input; std::vector kernel; std::vector bias; std::vector operator_output; std::vector subgraph_output; }; template class QuantizedDeconvolutionTestBase : public DeconvolutionTestBase { protected: QuantizedDeconvolutionTestBase() { i8dist = std::uniform_int_distribution(std::numeric_limits::min(), std::numeric_limits::max()); w8dist = std::uniform_int_distribution(-std::numeric_limits::max(), std::numeric_limits::max()); std::uniform_int_distribution u8dist( std::numeric_limits::min(), std::numeric_limits::max()); accumulators = std::vector( this->batch_size * this->output_height * this->output_width * this->groups * this->group_output_channels); } void initialize_accumulators_from_bias() { for (size_t i = 0; i < this->batch_size; i++) { for (size_t oy = 0; oy < this->output_height; oy++) { for (size_t ox = 0; ox < this->output_width; ox++) { for (size_t g = 0; g < this->groups; g++) { for (size_t oc = 0; oc < this->group_output_channels; oc++) { accumulators [(((i * this->output_height + oy) * this->output_width + ox) * this->groups + g) * this->group_output_channels + oc] = this->bias[g * this->group_output_channels + oc]; } } } } } } std::uniform_int_distribution i8dist; std::uniform_int_distribution u8dist; std::uniform_int_distribution w8dist; std::vector accumulators; }; using DeconvolutionTestQS8 = QuantizedDeconvolutionTestBase; using DeconvolutionTestQU8 = QuantizedDeconvolutionTestBase; using DeconvolutionTestF32 = DeconvolutionTestBase; TEST_F(DeconvolutionTestQS8, define) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, 0, 1.0f, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, /*flags=*/0, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t kernel_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, 0, 1.0f, kernel_dims.size(), kernel_dims.data(), kernel.data(), /*external_id=*/1, /*flags=*/0, &kernel_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint32, 0, 1.0f, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, 0, 1.0f, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, /*flags=*/0, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_deconvolution_2d( subgraph, padding_top, padding_right, padding_bottom, padding_left, adjustment_height, adjustment_width, kernel_height, kernel_width, upsampling_height, upsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, output_min, output_max, input_id, kernel_id, bias_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_deconvolution_2d); ASSERT_EQ(node->compute_type, xnn_compute_type_qs8); ASSERT_EQ(node->params.deconvolution_2d.padding_top, padding_top); ASSERT_EQ(node->params.deconvolution_2d.padding_right, padding_right); ASSERT_EQ(node->params.deconvolution_2d.padding_bottom, padding_bottom); ASSERT_EQ(node->params.deconvolution_2d.padding_left, padding_left); ASSERT_EQ(node->params.deconvolution_2d.kernel_height, kernel_height); ASSERT_EQ(node->params.deconvolution_2d.kernel_width, kernel_width); ASSERT_EQ(node->params.deconvolution_2d.upsampling_height, upsampling_height); ASSERT_EQ(node->params.deconvolution_2d.upsampling_width, upsampling_width); ASSERT_EQ(node->params.deconvolution_2d.dilation_height, dilation_height); ASSERT_EQ(node->params.deconvolution_2d.dilation_width, dilation_width); ASSERT_EQ(node->params.deconvolution_2d.adjustment_height, adjustment_height); ASSERT_EQ(node->params.deconvolution_2d.adjustment_width, adjustment_width); ASSERT_EQ(node->params.deconvolution_2d.groups, groups); ASSERT_EQ(node->params.deconvolution_2d.group_input_channels, group_input_channels); ASSERT_EQ(node->params.deconvolution_2d.group_output_channels, group_output_channels); ASSERT_EQ(node->activation.output_min, output_min); ASSERT_EQ(node->activation.output_max, output_max); ASSERT_EQ(node->num_inputs, 3); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->inputs[1], kernel_id); ASSERT_EQ(node->inputs[2], bias_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); } TEST_F(DeconvolutionTestQU8, define) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, 0, 1.0f, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, /*flags=*/0, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t kernel_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, 0, 1.0f, kernel_dims.size(), kernel_dims.data(), kernel.data(), /*external_id=*/1, /*flags=*/0, &kernel_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint32, 0, 1.0f, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, 0, 1.0f, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, /*flags=*/0, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_deconvolution_2d( subgraph, padding_top, padding_right, padding_bottom, padding_left, adjustment_height, adjustment_width, kernel_height, kernel_width, upsampling_height, upsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, output_min, output_max, input_id, kernel_id, bias_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_deconvolution_2d); ASSERT_EQ(node->compute_type, xnn_compute_type_qu8); ASSERT_EQ(node->params.deconvolution_2d.padding_top, padding_top); ASSERT_EQ(node->params.deconvolution_2d.padding_right, padding_right); ASSERT_EQ(node->params.deconvolution_2d.padding_bottom, padding_bottom); ASSERT_EQ(node->params.deconvolution_2d.padding_left, padding_left); ASSERT_EQ(node->params.deconvolution_2d.kernel_height, kernel_height); ASSERT_EQ(node->params.deconvolution_2d.kernel_width, kernel_width); ASSERT_EQ(node->params.deconvolution_2d.upsampling_height, upsampling_height); ASSERT_EQ(node->params.deconvolution_2d.upsampling_width, upsampling_width); ASSERT_EQ(node->params.deconvolution_2d.dilation_height, dilation_height); ASSERT_EQ(node->params.deconvolution_2d.dilation_width, dilation_width); ASSERT_EQ(node->params.deconvolution_2d.adjustment_height, adjustment_height); ASSERT_EQ(node->params.deconvolution_2d.adjustment_width, adjustment_width); ASSERT_EQ(node->params.deconvolution_2d.groups, groups); ASSERT_EQ(node->params.deconvolution_2d.group_input_channels, group_input_channels); ASSERT_EQ(node->params.deconvolution_2d.group_output_channels, group_output_channels); ASSERT_EQ(node->activation.output_min, output_min); ASSERT_EQ(node->activation.output_max, output_max); ASSERT_EQ(node->num_inputs, 3); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->inputs[1], kernel_id); ASSERT_EQ(node->inputs[2], bias_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); } TEST_F(DeconvolutionTestF32, define) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, /*flags=*/0, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t kernel_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, kernel_dims.size(), kernel_dims.data(), kernel.data(), /*external_id=*/1, /*flags=*/0, &kernel_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, /*flags=*/0, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_deconvolution_2d( subgraph, padding_top, padding_right, padding_bottom, padding_left, adjustment_height, adjustment_width, kernel_height, kernel_width, upsampling_height, upsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, output_min, output_max, input_id, kernel_id, bias_id, output_id, /*flags=*/0)); ASSERT_EQ(subgraph->num_nodes, 1); const struct xnn_node* node = &subgraph->nodes[0]; ASSERT_EQ(node->type, xnn_node_type_deconvolution_2d); ASSERT_EQ(node->compute_type, xnn_compute_type_fp32); ASSERT_EQ(node->params.deconvolution_2d.padding_top, padding_top); ASSERT_EQ(node->params.deconvolution_2d.padding_right, padding_right); ASSERT_EQ(node->params.deconvolution_2d.padding_bottom, padding_bottom); ASSERT_EQ(node->params.deconvolution_2d.padding_left, padding_left); ASSERT_EQ(node->params.deconvolution_2d.kernel_height, kernel_height); ASSERT_EQ(node->params.deconvolution_2d.kernel_width, kernel_width); ASSERT_EQ(node->params.deconvolution_2d.upsampling_height, upsampling_height); ASSERT_EQ(node->params.deconvolution_2d.upsampling_width, upsampling_width); ASSERT_EQ(node->params.deconvolution_2d.dilation_height, dilation_height); ASSERT_EQ(node->params.deconvolution_2d.dilation_width, dilation_width); ASSERT_EQ(node->params.deconvolution_2d.adjustment_height, adjustment_height); ASSERT_EQ(node->params.deconvolution_2d.adjustment_width, adjustment_width); ASSERT_EQ(node->params.deconvolution_2d.groups, groups); ASSERT_EQ(node->params.deconvolution_2d.group_input_channels, group_input_channels); ASSERT_EQ(node->params.deconvolution_2d.group_output_channels, group_output_channels); ASSERT_EQ(node->activation.output_min, output_min); ASSERT_EQ(node->activation.output_max, output_max); ASSERT_EQ(node->num_inputs, 3); ASSERT_EQ(node->inputs[0], input_id); ASSERT_EQ(node->inputs[1], kernel_id); ASSERT_EQ(node->inputs[2], bias_id); ASSERT_EQ(node->num_outputs, 1); ASSERT_EQ(node->outputs[0], output_id); ASSERT_EQ(node->flags, 0); } TEST_F(DeconvolutionTestQS8, matches_operator_api) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_operator_t op = nullptr; std::generate(input.begin(), input.end(), [&]() { return i8dist(rng); }); std::generate(kernel.begin(), kernel.end(), [&]() { return w8dist(rng); }); std::generate(bias.begin(), bias.end(), [&]() { return i32dist(rng); }); std::fill(operator_output.begin(), operator_output.end(), INT8_C(0xA5)); std::fill(subgraph_output.begin(), subgraph_output.end(), INT8_C(0xA5)); const int8_t input_zero_point = 1; const float input_scale = scale_dist(rng); const float kernel_scale = scale_dist(rng); for (size_t i = 0; i < batch_size; i++) { for (size_t oy = 0; oy < output_height; oy++) { for (size_t ox = 0; ox < output_width; ox++) { for (size_t ky = 0; ky < kernel_height; ky++) { const size_t y = oy + padding_top - ky * dilation_height; const size_t iy = y / upsampling_height; if (iy * upsampling_height == y && iy < input_height) { for (size_t kx = 0; kx < kernel_width; kx++) { const size_t x = ox + padding_left - kx * dilation_width; const size_t ix = x / upsampling_width; if (ix * upsampling_width == x && ix < input_width) { for (size_t g = 0; g < groups; g++) { for (size_t oc = 0; oc < group_output_channels; oc++) { for (size_t ic = 0; ic < group_input_channels; ic++) { accumulators [(((i * output_height + oy) * output_width + ox) * groups + g) * group_output_channels + oc] += (int32_t(input[((i * input_height + iy) * input_width + ix) * g * group_input_channels + ic]) - int32_t(input_zero_point)) * int32_t(kernel [(((g * group_output_channels + oc) * kernel_height + ky) * kernel_width + kx) * group_input_channels + ic]); } } } } } } } } } } // Compute renormalization parameters. const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend()); const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend()); float output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0; int8_t output_zero_point = int8_t(std::max( std::min( lrint(-0.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale), long(std::numeric_limits::max())), long(std::numeric_limits::min()))); const int8_t quantized_output_min = xnn_qs8_quantize(output_min, output_scale, output_zero_point); const int8_t quantized_output_max = xnn_qs8_quantize(output_max, output_scale, output_zero_point); // Call operator API. const xnn_status status = xnn_create_deconvolution2d_nhwc_qs8( padding_top, padding_right, padding_bottom, padding_left, kernel_height, kernel_width, upsampling_height, upsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, groups * group_input_channels, groups * group_output_channels, input_zero_point, input_scale, kernel_scale, kernel.data(), bias.data(), output_zero_point, output_scale, quantized_output_min, quantized_output_max, /*flags=*/0, nullptr, &op); std::unique_ptr auto_op(op, xnn_delete_operator); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); ASSERT_EQ( xnn_status_success, xnn_setup_deconvolution2d_nhwc_qs8( op, batch_size, input_height, input_width, adjustment_height, adjustment_width, input.data(), operator_output.data(), /*threadpool=*/nullptr)); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, input_zero_point, input_scale, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t kernel_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, 0, kernel_scale, kernel_dims.size(), kernel_dims.data(), kernel.data(), /*external_id=*/1, /*flags=*/0, &kernel_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint32, 0, kernel_scale, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint8, output_zero_point, output_scale, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_deconvolution_2d( subgraph, padding_top, padding_right, padding_bottom, padding_left, adjustment_height, adjustment_width, kernel_height, kernel_width, upsampling_height, upsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, output_min, output_max, input_id, kernel_id, bias_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); // Check outputs match. for (size_t i = 0; i < operator_output.size(); i++) { ASSERT_EQ(subgraph_output[i], operator_output[i]); } } TEST_F(DeconvolutionTestQU8, matches_operator_api) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_operator_t op = nullptr; std::generate(input.begin(), input.end(), [&]() { return u8dist(rng); }); std::generate(kernel.begin(), kernel.end(), [&]() { return u8dist(rng); }); std::generate(bias.begin(), bias.end(), [&]() { return i32dist(rng); }); std::fill(operator_output.begin(), operator_output.end(), UINT8_C(0xA5)); std::fill(subgraph_output.begin(), subgraph_output.end(), UINT8_C(0xA5)); const uint8_t input_zero_point = u8dist(rng); const uint8_t kernel_zero_point = 0; const float input_scale = scale_dist(rng); const float kernel_scale = scale_dist(rng); // Compute reference results, without renormalization. initialize_accumulators_from_bias(); for (size_t i = 0; i < batch_size; i++) { for (size_t oy = 0; oy < output_height; oy++) { for (size_t ox = 0; ox < output_width; ox++) { for (size_t ky = 0; ky < kernel_height; ky++) { const size_t y = oy + padding_top - ky * dilation_height; const size_t iy = y / upsampling_height; if (iy * upsampling_height == y && iy < input_height) { for (size_t kx = 0; kx < kernel_width; kx++) { const size_t x = ox + padding_left - kx * dilation_width; const size_t ix = x / upsampling_width; if (ix * upsampling_width == x && ix < input_width) { for (size_t g = 0; g < groups; g++) { for (size_t oc = 0; oc < group_output_channels; oc++) { for (size_t ic = 0; ic < group_input_channels; ic++) { accumulators [(((i * output_height + oy) * output_width + ox) * groups + g) * group_output_channels + oc] += (int32_t(input[((i * input_height + iy) * input_width + ix) * g * group_input_channels + ic]) - int32_t(input_zero_point)) * (int32_t(kernel [(((g * group_output_channels + oc) * kernel_height + ky) * kernel_width + kx) * group_input_channels + ic]) - int32_t(kernel_zero_point)); } } } } } } } } } } // Compute renormalization parameters. const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend()); const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend()); const double output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0; const uint8_t output_zero_point = uint8_t(std::max( std::min( lrint(127.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale), long(std::numeric_limits::max())), long(std::numeric_limits::min()))); const uint8_t quantized_output_min = xnn_qu8_quantize(output_min, output_scale, output_zero_point); const uint8_t quantized_output_max = xnn_qu8_quantize(output_max, output_scale, output_zero_point); // Call operator API. const xnn_status status = xnn_create_deconvolution2d_nhwc_qu8( padding_top, padding_right, padding_bottom, padding_left, kernel_height, kernel_width, upsampling_height, upsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, groups * group_input_channels, groups * group_output_channels, input_zero_point, input_scale, kernel_zero_point, kernel_scale, kernel.data(), bias.data(), output_zero_point, output_scale, quantized_output_min, quantized_output_max, /*flags=*/0, nullptr, &op); std::unique_ptr auto_op(op, xnn_delete_operator); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); ASSERT_EQ( xnn_status_success, xnn_setup_deconvolution2d_nhwc_qu8( op, batch_size, input_height, input_width, adjustment_height, adjustment_width, input.data(), operator_output.data(), /*threadpool=*/nullptr)); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, input_zero_point, input_scale, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t kernel_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, 0, kernel_scale, kernel_dims.size(), kernel_dims.data(), kernel.data(), /*external_id=*/1, /*flags=*/0, &kernel_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_qint32, 0, kernel_scale, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_quantized_tensor_value( subgraph, xnn_datatype_quint8, output_zero_point, output_scale, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_deconvolution_2d( subgraph, padding_top, padding_right, padding_bottom, padding_left, adjustment_height, adjustment_width, kernel_height, kernel_width, upsampling_height, upsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, output_min, output_max, input_id, kernel_id, bias_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); // Check outputs match. for (size_t i = 0; i < operator_output.size(); i++) { ASSERT_EQ(subgraph_output[i], operator_output[i]); } } TEST_F(DeconvolutionTestF32, matches_operator_api) { ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); xnn_operator_t op = nullptr; std::generate(input.begin(), input.end(), [&]() { return f32dist(rng); }); std::generate(kernel.begin(), kernel.end(), [&]() { return f32dist(rng); }); std::generate(bias.begin(), bias.end(), [&]() { return f32dist(rng); }); std::fill(operator_output.begin(), operator_output.end(), nanf("")); std::fill(subgraph_output.begin(), subgraph_output.end(), nanf("")); // Call operator API. const xnn_status status = xnn_create_deconvolution2d_nhwc_f32( padding_top, padding_right, padding_bottom, padding_left, kernel_height, kernel_width, upsampling_height, upsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, groups * group_input_channels, groups * group_output_channels, kernel.data(), bias.data(), output_min, output_max, /*flags=*/0, nullptr, &op); std::unique_ptr auto_op(op, xnn_delete_operator); if (status == xnn_status_unsupported_hardware) { GTEST_SKIP(); } ASSERT_EQ(xnn_status_success, status); ASSERT_NE(nullptr, op); ASSERT_EQ( xnn_status_success, xnn_setup_deconvolution2d_nhwc_f32( op, batch_size, input_height, input_width, adjustment_height, adjustment_width, input.data(), operator_output.data(), /*threadpool=*/nullptr)); ASSERT_EQ(xnn_status_success, xnn_run_operator(op, /*threadpool=*/nullptr)); // Call subgraph API. xnn_subgraph_t subgraph = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_subgraph(4, /*flags=*/0, &subgraph)); std::unique_ptr auto_subgraph(subgraph, xnn_delete_subgraph); uint32_t input_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, input_dims.size(), input_dims.data(), nullptr, /*external_id=*/0, XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); ASSERT_NE(input_id, XNN_INVALID_NODE_ID); uint32_t kernel_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, kernel_dims.size(), kernel_dims.data(), kernel.data(), /*external_id=*/1, /*flags=*/0, &kernel_id)); uint32_t bias_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, bias_dims.size(), bias_dims.data(), bias.data(), /*external_id=*/2, /*flags=*/0, &bias_id)); uint32_t output_id = XNN_INVALID_NODE_ID; ASSERT_EQ( xnn_status_success, xnn_define_tensor_value( subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, /*external_id=*/3, XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); ASSERT_NE(output_id, XNN_INVALID_NODE_ID); ASSERT_EQ( xnn_status_success, xnn_define_deconvolution_2d( subgraph, padding_top, padding_right, padding_bottom, padding_left, adjustment_height, adjustment_width, kernel_height, kernel_width, upsampling_height, upsampling_width, dilation_height, dilation_width, groups, group_input_channels, group_output_channels, output_min, output_max, input_id, kernel_id, bias_id, output_id, /*flags=*/0)); xnn_runtime_t runtime = nullptr; ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); ASSERT_NE(nullptr, runtime); std::unique_ptr auto_runtime(runtime, xnn_delete_runtime); std::array external = { xnn_external_value{input_id, input.data()}, xnn_external_value{output_id, subgraph_output.data()}}; ASSERT_EQ(xnn_status_success, xnn_setup_runtime(runtime, external.size(), external.data())); ASSERT_EQ(xnn_status_success, xnn_invoke_runtime(runtime)); // Check outputs match. for (size_t i = 0; i < operator_output.size(); i++) { ASSERT_EQ(subgraph_output[i], operator_output[i]); } }