// Copyright 2022 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #pragma once #include #include #include namespace xnnpack { void compute_convolution_qs8_reference_results( size_t batch_size, size_t output_height, size_t output_width, size_t input_height, size_t input_width, size_t input_padding_top, size_t input_padding_right, size_t input_padding_bottom, size_t input_padding_left, size_t kernel_height, size_t kernel_width, size_t subsampling_height, size_t subsampling_width, size_t dilation_height, size_t dilation_width, size_t groups, size_t group_input_channels, size_t group_output_channels, size_t input_channel_stride, int8_t input_zero_point, const std::vector& input, const std::vector& filter, std::vector& accumulators, bool has_bias, const std::vector& bias); void compute_convolution_qs8_reference_results( size_t batch_size, size_t output_height, size_t output_width, size_t input_height, size_t input_width, size_t input_padding_top, size_t input_padding_right, size_t input_padding_bottom, size_t input_padding_left, size_t kernel_height, size_t kernel_width, size_t subsampling_height, size_t subsampling_width, size_t dilation_height, size_t dilation_width, size_t groups, size_t group_input_channels, size_t group_output_channels, int8_t input_zero_point, const std::vector& input, const std::vector& filter, std::vector& accumulators, bool has_bias, const std::vector& bias); void compute_convolution_qu8_reference_results( size_t batch_size, size_t output_height, size_t output_width, size_t input_height, size_t input_width, size_t input_padding_top, size_t input_padding_right, size_t input_padding_bottom, size_t input_padding_left, size_t kernel_height, size_t kernel_width, size_t subsampling_height, size_t subsampling_width, size_t dilation_height, size_t dilation_width, size_t groups, size_t group_input_channels, size_t group_output_channels, uint8_t input_zero_point, uint8_t kernel_zero_point, const std::vector& input, const std::vector& filter, std::vector& accumulators, bool has_bias, const std::vector& bias); void compute_convolution_qu8_reference_results( size_t batch_size, size_t output_height, size_t output_width, size_t input_height, size_t input_width, size_t input_padding_top, size_t input_padding_right, size_t input_padding_bottom, size_t input_padding_left, size_t kernel_height, size_t kernel_width, size_t subsampling_height, size_t subsampling_width, size_t dilation_height, size_t dilation_width, size_t groups, size_t group_input_channels, size_t group_output_channels, size_t input_channel_stride, uint8_t input_zero_point, uint8_t kernel_zero_point, const std::vector& input, const std::vector& filter, std::vector& accumulators, bool has_bias, const std::vector& bias); void compute_depthwise_convolution_qs8_reference_results( size_t batch_size, size_t output_height, size_t output_width, size_t input_height, size_t input_width, size_t input_padding_top, size_t input_padding_right, size_t input_padding_bottom, size_t input_padding_left, size_t kernel_height, size_t kernel_width, size_t subsampling_height, size_t subsampling_width, size_t dilation_height, size_t dilation_width, size_t input_channels, size_t depth_multiplier, size_t input_channel_stride, int8_t input_zero_point, const std::vector& input, const std::vector& filter, std::vector& accumulators, bool has_bias, const std::vector& bias); void compute_depthwise_convolution_qs8_reference_results( size_t batch_size, size_t output_height, size_t output_width, size_t input_height, size_t input_width, size_t input_padding_top, size_t input_padding_right, size_t input_padding_bottom, size_t input_padding_left, size_t kernel_height, size_t kernel_width, size_t subsampling_height, size_t subsampling_width, size_t dilation_height, size_t dilation_width, size_t input_channels, size_t depth_multiplier, int8_t input_zero_point, const std::vector& input, const std::vector& filter, std::vector& accumulators, bool has_bias, const std::vector& bias); void compute_depthwise_convolution_qu8_reference_results( size_t batch_size, size_t output_height, size_t output_width, size_t input_height, size_t input_width, size_t input_padding_top, size_t input_padding_right, size_t input_padding_bottom, size_t input_padding_left, size_t kernel_height, size_t kernel_width, size_t subsampling_height, size_t subsampling_width, size_t dilation_height, size_t dilation_width, size_t input_channels, size_t depth_multiplier, size_t input_channel_stride, uint8_t input_zero_point, uint8_t kernel_zero_point, const std::vector& input, const std::vector& filter, std::vector& accumulators, bool has_bias, const std::vector& bias); void compute_depthwise_convolution_qu8_reference_results( size_t batch_size, size_t output_height, size_t output_width, size_t input_height, size_t input_width, size_t input_padding_top, size_t input_padding_right, size_t input_padding_bottom, size_t input_padding_left, size_t kernel_height, size_t kernel_width, size_t subsampling_height, size_t subsampling_width, size_t dilation_height, size_t dilation_width, size_t input_channels, size_t depth_multiplier, uint8_t input_zero_point, uint8_t kernel_zero_point, const std::vector& input, const std::vector& filter, std::vector& accumulators, bool has_bias, const std::vector& bias); } // namespace xnnpack