// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include #include #include #include static enum xnn_status create_deconvolution_operator( const struct xnn_node* node, const struct xnn_value* values, size_t num_values, struct xnn_operator_data* opdata, const struct xnn_caches* caches) { assert(node->num_inputs >= 2); assert(node->num_inputs <= 3); const bool use_bias = node->num_inputs >= 3; const uint32_t input_id = node->inputs[0]; assert(input_id != XNN_INVALID_VALUE_ID); assert(input_id < num_values); const uint32_t filter_id = node->inputs[1]; assert(filter_id != XNN_INVALID_VALUE_ID); assert(filter_id < num_values); const void* bias_data = NULL; if (use_bias) { const uint32_t bias_id = node->inputs[2]; assert(bias_id != XNN_INVALID_VALUE_ID); assert(bias_id < num_values); bias_data = values[bias_id].data; assert(bias_data != NULL); } assert(node->num_outputs == 1); const uint32_t output_id = node->outputs[0]; assert(output_id != XNN_INVALID_VALUE_ID); assert(output_id < num_values); const void* filter_data = values[filter_id].data; assert(filter_data != NULL); enum xnn_status status = xnn_status_uninitialized; switch (node->compute_type) { #ifndef XNN_NO_F16_OPERATORS case xnn_compute_type_fp16: status = xnn_create_deconvolution2d_nhwc_f16( node->params.deconvolution_2d.padding_top, node->params.deconvolution_2d.padding_right, node->params.deconvolution_2d.padding_bottom, node->params.deconvolution_2d.padding_left, node->params.deconvolution_2d.kernel_height, node->params.deconvolution_2d.kernel_width, node->params.deconvolution_2d.upsampling_height, node->params.deconvolution_2d.upsampling_width, node->params.deconvolution_2d.dilation_height, node->params.deconvolution_2d.dilation_width, node->params.deconvolution_2d.groups, node->params.deconvolution_2d.group_input_channels, node->params.deconvolution_2d.group_output_channels, node->params.deconvolution_2d.group_input_channels * node->params.deconvolution_2d.groups /* input_pixel_stride */, node->params.deconvolution_2d.group_output_channels * node->params.deconvolution_2d.groups /* output_pixel_stride */, filter_data, bias_data, node->activation.output_min, node->activation.output_max, node->flags | XNN_FLAG_FP32_STATIC_WEIGHTS, caches, &opdata->operator_objects[0]); break; #endif // !defined(XNN_NO_F16_OPERATORS) case xnn_compute_type_fp32: status = xnn_create_deconvolution2d_nhwc_f32( node->params.deconvolution_2d.padding_top, node->params.deconvolution_2d.padding_right, node->params.deconvolution_2d.padding_bottom, node->params.deconvolution_2d.padding_left, node->params.deconvolution_2d.kernel_height, node->params.deconvolution_2d.kernel_width, node->params.deconvolution_2d.upsampling_height, node->params.deconvolution_2d.upsampling_width, node->params.deconvolution_2d.dilation_height, node->params.deconvolution_2d.dilation_width, node->params.deconvolution_2d.groups, node->params.deconvolution_2d.group_input_channels, node->params.deconvolution_2d.group_output_channels, node->params.deconvolution_2d.group_input_channels * node->params.deconvolution_2d.groups /* input_pixel_stride */, node->params.deconvolution_2d.group_output_channels * node->params.deconvolution_2d.groups /* output_pixel_stride */, filter_data, bias_data, node->activation.output_min, node->activation.output_max, node->flags, caches, &opdata->operator_objects[0]); break; #ifndef XNN_NO_QS8_OPERATORS case xnn_compute_type_qs8: { const float output_scale = values[output_id].quantization.scale; const int32_t output_zero_point = values[output_id].quantization.zero_point; const int8_t output_min = xnn_qs8_quantize(node->activation.output_min, output_scale, output_zero_point); const int8_t output_max = xnn_qs8_quantize(node->activation.output_max, output_scale, output_zero_point); status = xnn_create_deconvolution2d_nhwc_qs8( node->params.deconvolution_2d.padding_top, node->params.deconvolution_2d.padding_right, node->params.deconvolution_2d.padding_bottom, node->params.deconvolution_2d.padding_left, node->params.deconvolution_2d.kernel_height, node->params.deconvolution_2d.kernel_width, node->params.deconvolution_2d.upsampling_height, node->params.deconvolution_2d.upsampling_width, node->params.deconvolution_2d.dilation_height, node->params.deconvolution_2d.dilation_width, node->params.deconvolution_2d.groups, node->params.deconvolution_2d.group_input_channels, node->params.deconvolution_2d.group_output_channels, node->params.deconvolution_2d.group_input_channels * node->params.deconvolution_2d.groups /* input_pixel_stride */, node->params.deconvolution_2d.group_output_channels * node->params.deconvolution_2d.groups /* output_pixel_stride */, (int8_t) values[input_id].quantization.zero_point, values[input_id].quantization.scale, values[filter_id].quantization.scale, filter_data, bias_data, output_zero_point, output_scale, output_min, output_max, node->flags, caches, &opdata->operator_objects[0]); break; } #endif // !defined(XNN_NO_QS8_OPERATORS) #ifndef XNN_NO_QU8_OPERATORS case xnn_compute_type_qu8: { const float output_scale = values[output_id].quantization.scale; const int32_t output_zero_point = values[output_id].quantization.zero_point; const uint8_t output_min = xnn_qu8_quantize(node->activation.output_min, output_scale, output_zero_point); const uint8_t output_max = xnn_qu8_quantize(node->activation.output_max, output_scale, output_zero_point); status = xnn_create_deconvolution2d_nhwc_qu8( node->params.deconvolution_2d.padding_top, node->params.deconvolution_2d.padding_right, node->params.deconvolution_2d.padding_bottom, node->params.deconvolution_2d.padding_left, node->params.deconvolution_2d.kernel_height, node->params.deconvolution_2d.kernel_width, node->params.deconvolution_2d.upsampling_height, node->params.deconvolution_2d.upsampling_width, node->params.deconvolution_2d.dilation_height, node->params.deconvolution_2d.dilation_width, node->params.deconvolution_2d.groups, node->params.deconvolution_2d.group_input_channels, node->params.deconvolution_2d.group_output_channels, node->params.deconvolution_2d.group_input_channels * node->params.deconvolution_2d.groups /* input_pixel_stride */, node->params.deconvolution_2d.group_output_channels * node->params.deconvolution_2d.groups /* output_pixel_stride */, (uint8_t) values[input_id].quantization.zero_point, values[input_id].quantization.scale, (uint8_t) values[filter_id].quantization.zero_point, values[filter_id].quantization.scale, filter_data, bias_data, output_zero_point, output_scale, output_min, output_max, node->flags, caches, &opdata->operator_objects[0]); break; } #endif // !defined(XNN_NO_QU8_OPERATORS) default: XNN_UNREACHABLE; } if (status == xnn_status_success) { opdata->batch_size = values[input_id].shape.dim[0]; opdata->input_height = values[input_id].shape.dim[1]; opdata->input_width = values[input_id].shape.dim[2]; opdata->adjustment_height = node->params.deconvolution_2d.adjustment_height; opdata->adjustment_width = node->params.deconvolution_2d.adjustment_width; opdata->inputs[0] = input_id; opdata->outputs[0] = output_id; } return status; } static enum xnn_status setup_deconvolution_operator( const struct xnn_operator_data* opdata, const struct xnn_blob* blobs, size_t num_blobs, pthreadpool_t threadpool) { const uint32_t input_id = opdata->inputs[0]; assert(input_id != XNN_INVALID_VALUE_ID); assert(input_id < num_blobs); const uint32_t output_id = opdata->outputs[0]; assert(output_id != XNN_INVALID_VALUE_ID); assert(output_id < num_blobs); const struct xnn_blob* input_blob = blobs + input_id; const void* input_data = input_blob->data; assert(input_data != NULL); const struct xnn_blob* output_blob = blobs + output_id; void* output_data = output_blob->data; assert(output_data != NULL); switch (opdata->operator_objects[0]->type) { #ifndef XNN_NO_F16_OPERATORS case xnn_operator_type_deconvolution_nhwc_f16: return xnn_setup_deconvolution2d_nhwc_f16( opdata->operator_objects[0], opdata->batch_size, opdata->input_height, opdata->input_width, opdata->adjustment_height, opdata->adjustment_width, input_data, output_data, threadpool); break; #endif // !defined(XNN_NO_F16_OPERATORS) case xnn_operator_type_deconvolution_nhwc_f32: return xnn_setup_deconvolution2d_nhwc_f32( opdata->operator_objects[0], opdata->batch_size, opdata->input_height, opdata->input_width, opdata->adjustment_height, opdata->adjustment_width, input_data, output_data, threadpool); break; #ifndef XNN_NO_QS8_OPERATORS case xnn_operator_type_deconvolution_nhwc_qs8: return xnn_setup_deconvolution2d_nhwc_qs8( opdata->operator_objects[0], opdata->batch_size, opdata->input_height, opdata->input_width, opdata->adjustment_height, opdata->adjustment_width, input_data, output_data, threadpool); break; #endif // !defined(XNN_NO_QS8_OPERATORS) #ifndef XNN_NO_QU8_OPERATORS case xnn_operator_type_deconvolution_nhwc_qu8: return xnn_setup_deconvolution2d_nhwc_qu8( opdata->operator_objects[0], opdata->batch_size, opdata->input_height, opdata->input_width, opdata->adjustment_height, opdata->adjustment_width, input_data, output_data, threadpool); break; #endif // !defined(XNN_NO_QU8_OPERATORS) default: XNN_UNREACHABLE; } } static inline enum xnn_compute_type validate_datatypes_with_bias( enum xnn_datatype input_datatype, enum xnn_datatype filter_datatype, enum xnn_datatype bias_datatype, enum xnn_datatype output_datatype) { switch (filter_datatype) { case xnn_datatype_fp32: if (input_datatype == xnn_datatype_fp32 && bias_datatype == xnn_datatype_fp32 && output_datatype == xnn_datatype_fp32) { return xnn_compute_type_fp32; } break; #ifndef XNN_NO_QS8_OPERATORS case xnn_datatype_qint8: if (input_datatype == xnn_datatype_qint8 && bias_datatype == xnn_datatype_qint32 && output_datatype == xnn_datatype_qint8) { return xnn_compute_type_qs8; } break; #endif // !defined(XNN_NO_QS8_OPERATORS) #ifndef XNN_NO_QU8_OPERATORS case xnn_datatype_quint8: if (input_datatype == xnn_datatype_quint8 && bias_datatype == xnn_datatype_qint32 && output_datatype == xnn_datatype_quint8) { return xnn_compute_type_qu8; } break; #endif // !defined(XNN_NO_QU8_OPERATORS) default: XNN_UNREACHABLE; } return xnn_compute_type_invalid; } static inline enum xnn_compute_type validate_datatypes_without_bias( enum xnn_datatype input_datatype, enum xnn_datatype filter_datatype, enum xnn_datatype output_datatype) { switch (filter_datatype) { case xnn_datatype_fp32: if (input_datatype == xnn_datatype_fp32 && output_datatype == xnn_datatype_fp32) { return xnn_compute_type_fp32; } break; #ifndef XNN_NO_QS8_OPERATORS case xnn_datatype_qint8: if (input_datatype == xnn_datatype_qint8 && output_datatype == xnn_datatype_qint8) { return xnn_compute_type_qs8; } break; #endif // !defined(XNN_NO_QS8_OPERATORS) #ifndef XNN_NO_QU8_OPERATORS case xnn_datatype_quint8: if (input_datatype == xnn_datatype_quint8 && output_datatype == xnn_datatype_quint8) { return xnn_compute_type_qu8; } break; #endif // !defined(XNN_NO_QU8_OPERATORS) default: XNN_UNREACHABLE; } return xnn_compute_type_invalid; } enum xnn_status xnn_define_deconvolution_2d( xnn_subgraph_t subgraph, uint32_t padding_top, uint32_t padding_right, uint32_t padding_bottom, uint32_t padding_left, uint32_t adjustment_height, uint32_t adjustment_width, uint32_t kernel_height, uint32_t kernel_width, uint32_t upsampling_height, uint32_t upsampling_width, uint32_t dilation_height, uint32_t dilation_width, uint32_t groups, size_t group_input_channels, size_t group_output_channels, float output_min, float output_max, uint32_t input_id, uint32_t filter_id, uint32_t bias_id, uint32_t output_id, uint32_t flags) { enum xnn_status status; if ((status = xnn_subgraph_check_xnnpack_initialized(xnn_node_type_deconvolution_2d)) != xnn_status_success) { return status; } if (kernel_width == 0 || kernel_height == 0) { xnn_log_error( "failed to define %s operator with %" PRIu32 "x%" PRIu32 " kernel: kernel dimensions must be non-zero", xnn_node_type_to_string(xnn_node_type_deconvolution_2d), kernel_width, kernel_height); return xnn_status_invalid_parameter; } if (upsampling_width == 0 || upsampling_height == 0) { xnn_log_error( "failed to define %s operator with %" PRIu32 "x%" PRIu32 " upsampling: upsampling dimensions must be non-zero", xnn_node_type_to_string(xnn_node_type_deconvolution_2d), upsampling_width, upsampling_height); return xnn_status_invalid_parameter; } if (dilation_width == 0 || dilation_height == 0) { xnn_log_error( "failed to define %s operator with %" PRIu32 "x%" PRIu32 " dilation: dilation dimensions must be non-zero", xnn_node_type_to_string(xnn_node_type_deconvolution_2d), dilation_width, dilation_height); return xnn_status_invalid_parameter; } if (groups == 0) { xnn_log_error( "failed to define %s operator with %" PRIu32 " groups: number of groups must be non-zero", xnn_node_type_to_string(xnn_node_type_deconvolution_2d), groups); return xnn_status_invalid_parameter; } if (group_input_channels == 0) { xnn_log_error( "failed to define %s operator with %zu input channels per group: number of channels must be non-zero", xnn_node_type_to_string(xnn_node_type_deconvolution_2d), group_input_channels); return xnn_status_invalid_parameter; } if (group_output_channels == 0) { xnn_log_error( "failed to define %s operator with %zu output channels per group: number of channels must be non-zero", xnn_node_type_to_string(xnn_node_type_deconvolution_2d), group_output_channels); return xnn_status_invalid_parameter; } status = xnn_subgraph_check_output_min_max(xnn_node_type_deconvolution_2d, output_min, output_max); if (status != xnn_status_success) { return status; } if ((status = xnn_subgraph_check_input_node_id(xnn_node_type_deconvolution_2d, input_id, subgraph->num_values)) != xnn_status_success) { return status; } const struct xnn_value* input_value = &subgraph->values[input_id]; status = xnn_subgraph_check_input_type_dense(xnn_node_type_deconvolution_2d, input_id, input_value); if (status != xnn_status_success) { return status; } switch (input_value->datatype) { case xnn_datatype_fp32: #ifndef XNN_NO_QS8_OPERATORS case xnn_datatype_qint8: #endif // !defined(XNN_NO_QS8_OPERATORS) #ifndef XNN_NO_QU8_OPERATORS case xnn_datatype_quint8: #endif // !defined(XNN_NO_QU8_OPERATORS) break; default: xnn_log_error( "failed to define %s operator with input ID #%" PRIu32 ": unsupported Value datatype %s (%d)", xnn_node_type_to_string(xnn_node_type_deconvolution_2d), input_id, xnn_datatype_to_string(input_value->datatype), input_value->datatype); return xnn_status_invalid_parameter; } if (filter_id >= subgraph->num_values) { xnn_log_error( "failed to define %s operator with filter ID #%" PRIu32 ": invalid Value ID", xnn_node_type_to_string(xnn_node_type_deconvolution_2d), filter_id); return xnn_status_invalid_parameter; } const struct xnn_value* filter_value = &subgraph->values[filter_id]; if (filter_value->type != xnn_value_type_dense_tensor) { xnn_log_error( "failed to define %s operator with filter ID #%" PRIu32 ": unsupported Value type %d (expected dense tensor)", xnn_node_type_to_string(xnn_node_type_deconvolution_2d), filter_id, filter_value->type); return xnn_status_invalid_parameter; } if (filter_value->data == NULL) { xnn_log_error( "failed to define %s operator with filter ID #%" PRIu32 ": non-static Value", xnn_node_type_to_string(xnn_node_type_deconvolution_2d), filter_id); return xnn_status_invalid_parameter; } switch (filter_value->datatype) { case xnn_datatype_fp32: break; #ifndef XNN_NO_QS8_OPERATORS case xnn_datatype_qint8: if (filter_value->quantization.zero_point != 0) { xnn_log_error( "failed to define %s operator with filter ID #%" PRIu32 ": unsupported quantization zero point %" PRId32 " for datatype %s", xnn_node_type_to_string(xnn_node_type_deconvolution_2d), filter_id, filter_value->quantization.zero_point, xnn_datatype_to_string(filter_value->datatype)); } break; #endif // !defined(XNN_NO_QS8_OPERATORS) #ifndef XNN_NO_QU8_OPERATORS case xnn_datatype_quint8: break; #endif // !defined(XNN_NO_QU8_OPERATORS) default: xnn_log_error( "failed to define %s operator with filter ID #%" PRIu32 ": unsupported Value datatype %s (%d)", xnn_node_type_to_string(xnn_node_type_deconvolution_2d), filter_id, xnn_datatype_to_string(filter_value->datatype), filter_value->datatype); return xnn_status_invalid_parameter; } const struct xnn_value* bias_value = NULL; if (bias_id != XNN_INVALID_VALUE_ID) { if (bias_id >= subgraph->num_values) { xnn_log_error( "failed to define %s operator with bias ID #%" PRIu32 ": invalid Value ID", xnn_node_type_to_string(xnn_node_type_deconvolution_2d), bias_id); return xnn_status_invalid_parameter; } bias_value = &subgraph->values[bias_id]; if (bias_value->type != xnn_value_type_dense_tensor) { xnn_log_error( "failed to define %s operator with bias ID #%" PRIu32 ": unsupported Value type %d (expected dense tensor)", xnn_node_type_to_string(xnn_node_type_deconvolution_2d), bias_id, bias_value->type); return xnn_status_invalid_parameter; } if (bias_value->data == NULL) { xnn_log_error( "failed to define %s operator with bias ID #%" PRIu32 ": non-static Value", xnn_node_type_to_string(xnn_node_type_deconvolution_2d), bias_id); return xnn_status_invalid_parameter; } switch (bias_value->datatype) { case xnn_datatype_fp32: #if !defined(XNN_NO_QS8_OPERATORS) || !defined(XNN_NO_QU8_OPERATORS) case xnn_datatype_qint32: #endif // !defined(XNN_NO_QS8_OPERATORS) || !defined(XNN_NO_QU8_OPERATORS) break; default: xnn_log_error( "failed to define %s operator with bias ID #%" PRIu32 ": unsupported Value datatype %s (%d)", xnn_node_type_to_string(xnn_node_type_deconvolution_2d), bias_id, xnn_datatype_to_string(bias_value->datatype), bias_value->datatype); return xnn_status_invalid_parameter; } } status = xnn_subgraph_check_output_node_id(xnn_node_type_deconvolution_2d, output_id, subgraph->num_values); if (status != xnn_status_success) { return status; } const struct xnn_value* output_value = &subgraph->values[output_id]; status = xnn_subgraph_check_output_type_dense(xnn_node_type_deconvolution_2d, output_id, output_value); if (status != xnn_status_success) { return status; } switch (output_value->datatype) { case xnn_datatype_fp32: #ifndef XNN_NO_QS8_OPERATORS case xnn_datatype_qint8: #endif // !defined(XNN_NO_QS8_OPERATORS) #ifndef XNN_NO_QU8_OPERATORS case xnn_datatype_quint8: #endif // !defined(XNN_NO_QU8_OPERATORS) break; default: xnn_log_error( "failed to define %s operator with output ID #%" PRIu32 ": unsupported Value datatype %s (%d)", xnn_node_type_to_string(xnn_node_type_deconvolution_2d), output_id, xnn_datatype_to_string(output_value->datatype), output_value->datatype); return xnn_status_invalid_parameter; } enum xnn_compute_type compute_type = xnn_compute_type_invalid; if (bias_value != NULL) { compute_type = validate_datatypes_with_bias( input_value->datatype, filter_value->datatype, bias_value->datatype, output_value->datatype); if (compute_type == xnn_compute_type_invalid) { xnn_log_error( "failed to define %s operator with input ID #%" PRIu32 ", filter ID #%" PRIu32 ", bias ID #%" PRIu32 ", and output ID #%" PRIu32 ": mismatching datatypes across input (%s), filter (%s), bias (%s), and output (%s)", xnn_node_type_to_string(xnn_node_type_deconvolution_2d), input_id, filter_id, bias_id, output_id, xnn_datatype_to_string(input_value->datatype), xnn_datatype_to_string(filter_value->datatype), xnn_datatype_to_string(bias_value->datatype), xnn_datatype_to_string(output_value->datatype)); return xnn_status_invalid_parameter; } } else { compute_type = validate_datatypes_without_bias( input_value->datatype, filter_value->datatype, output_value->datatype); if (compute_type == xnn_compute_type_invalid) { xnn_log_error( "failed to define %s operator with input ID #%" PRIu32 ", filter ID #%" PRIu32 ", and output ID #%" PRIu32 ": mismatching datatypes across input (%s), filter (%s), and output (%s)", xnn_node_type_to_string(xnn_node_type_deconvolution_2d), input_id, filter_id, output_id, xnn_datatype_to_string(input_value->datatype), xnn_datatype_to_string(filter_value->datatype), xnn_datatype_to_string(output_value->datatype)); return xnn_status_invalid_parameter; } } struct xnn_node* node = xnn_subgraph_new_node(subgraph); if (node == NULL) { return xnn_status_out_of_memory; } node->type = xnn_node_type_deconvolution_2d; node->compute_type = compute_type; node->params.deconvolution_2d.padding_top = padding_top; node->params.deconvolution_2d.padding_right = padding_right; node->params.deconvolution_2d.padding_bottom = padding_bottom; node->params.deconvolution_2d.padding_left = padding_left; node->params.deconvolution_2d.kernel_height = kernel_height; node->params.deconvolution_2d.kernel_width = kernel_width; node->params.deconvolution_2d.upsampling_height = upsampling_height; node->params.deconvolution_2d.upsampling_width = upsampling_width; node->params.deconvolution_2d.dilation_height = dilation_height; node->params.deconvolution_2d.dilation_width = dilation_width; node->params.deconvolution_2d.adjustment_height = adjustment_height; node->params.deconvolution_2d.adjustment_width = adjustment_width; node->params.deconvolution_2d.groups = groups; node->params.deconvolution_2d.group_input_channels = group_input_channels; node->params.deconvolution_2d.group_output_channels = group_output_channels; node->activation.output_min = output_min; node->activation.output_max = output_max; node->num_inputs = 2 + (size_t) (bias_value != NULL); node->inputs[0] = input_id; node->inputs[1] = filter_id; node->inputs[2] = bias_id; node->num_outputs = 1; node->outputs[0] = output_id; node->flags = flags; node->create = create_deconvolution_operator; node->setup = setup_deconvolution_operator; return xnn_status_success; };